972 resultados para PHYSICS, FLUIDS
Resumo:
Sixty-three pottery fragments from four archaeological sites, numbered RST110, RST101, RST114 and RST114, in the Taquari Valley, vicinity of the city of Lajeado, Rio Grande do Sul state, southern Brazil, have been dated by the thermoluminescence method. Some of them from RST110 and RST101 are as old as 1400-1200 years, whereas those from RST114 and RST107 are younger than 800 years. This result indicates that RST101 and RST110 were peopled earlier than RST114 and RST107. The recent dates found are 302, 295 and 146 years and they are possible, since the first German immigrants who arrived in this region encountered Tupi-Guarani Indians still living there. One interesting result refers to the glow curves of quartz grains RST110, RST101 and RST114 that differ from the glow curves of RST107 quartz grains.
Resumo:
It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos from spreading to large regions, making the controlled dynamics more regular. We show numerically that the control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in phase space are useful to improve regular particle acceleration.
Resumo:
Fluctuation-dissipation theorems can be used to predict characteristics of noise from characteristics of the macroscopic response of a system. In the case of gene networks, feedback control determines the "network rigidity," defined as resistance to slow external changes. We propose an effective Fokker-Planck equation that relates gene expression noise to topology and to time scales of the gene network. We distinguish between two situations referred to as normal and inverted time hierarchies. The noise can be buffered by network feedback in the first situation, whereas it can be topology independent in the latter.
Resumo:
The measurement called accessibility has been proposed as a means to quantify the efficiency of the communication between nodes in complex networks. This article reports results regarding the properties of accessibility, including its relationship with the average minimal time to visit all nodes reachable after h steps along a random walk starting from a source, as well as the number of nodes that are visited after a finite period of time. We characterize the relationship between accessibility and the average number of walks required in order to visit all reachable nodes (the exploration time), conjecture that the maximum accessibility implies the minimal exploration time, and confirm the relationship between the accessibility values and the number of nodes visited after a basic time unit. The latter relationship is investigated with respect to three types of dynamics: traditional random walks, self-avoiding random walks, and preferential random walks.
Resumo:
From microscopic models, a Langevin equation can, in general, be derived only as an approximation. Two possible conditions to validate this approximation are studied. One is, for a linear Langevin equation, that the frequency of the Fourier transform should be close to the natural frequency of the system. The other is by the assumption of "slow" variables. We test this method by comparison with an exactly soluble model and point out its limitations. We base our discussion on two approaches. The first is a direct, elementary treatment of Senitzky. The second is via a generalized Langevin equation as an intermediate step.
Resumo:
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
Resumo:
We investigate the canonical equilibrium of systems with long-range forces in competition. These forces create a modulation in the interaction potential and modulated phases appear at the system scale. The structure of these phases differentiate this system from monotonic potentials, where only the mean-field and disordered phases exist. With increasing temperature, the system switches from one ordered phase to another through a first-order phase transition. Both mean-field and modulated phases may be stable, even at zero temperature, and the long-range nature of the interaction will lead to metastability characterized by extremely long time scales.
Resumo:
An explosive synchronization can be observed in scale-free networks when Kuramoto oscillators have natural frequencies equal to their number of connections. The present paper reports on mean-field approximations to determine the critical coupling of such explosive synchronization. It has been verified that the equation obtained for the critical coupling has an inverse dependence on the network average degree. This expression differs from those whose frequency distributions are unimodal and even. In this case, the critical coupling depends on the ratio between the first and second statistical moments of the degree distribution. Numerical simulations were also conducted to verify our analytical results.
Resumo:
In this work, a new enrichment space to accommodate jumps in the pressure field at immersed interfaces in finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that can be eliminated by means of static condensation. The new space is tested and compared with the classical P1 space and to the space proposed by Ausas et al (Comp. Meth. Appl. Mech. Eng., Vol. 199, 10191031, 2010) in several problems involving jumps in the viscosity and/or the presence of singular forces at interfaces not conforming with the element edges. The combination of this enrichment space with another enrichment that accommodates discontinuities in the pressure gradient has also been explored, exhibiting excellent results in problems involving jumps in the density or the volume forces. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The oil industry uses gas separators in production wells as the free gas present in the suction of the pump reduces the pumping efficiency and pump lifetime. Therefore, free gas is one of the most important variables in the design of pumping systems. However, in the literature there is little information on these separators. It is the case of the inverted-shroud gravitational gas separator. It has an annular geometry due to the installation of a cylindrical container in between the well casing and pioduction pipe (tubing). The purpose of the present study is to understand the phenomenology and behavior of inverted-shroud separator. Experimental tests were performed in a 10.5-m-length inclinable glass tube with air and water as working fluids. The water flow rate was in the range of 8.265-26.117 l/min and the average inlet air mass flow rate was 1.1041 kg/h, with inclination angles of 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, 80 degrees and 85 degrees. One of the findings is that the length between the inner annular level and production pipe inlet is one of the most important design parameters and based on that a new criterion for total gas separation is proposed. We also found that the phenomenology of the studied separator is not directly dependent on the gas flow rate, but on the average velocity of the free surface flow generated inside the separator. Maps of efficiency of gas separation were plotted and showed that liquid flow rate, inclination angle and pressure difference between casing and production pipe outlet are the main variables related to the gas separation phenomenon. The new data can be used for the development of design tools aiming to the optimized project of the pumping system for oil production in directional wells. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The stratified oil-water flow pattern is common in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interfacial wave properties, i.e., average shape, celerity and geometric properties (amplitude and wavelength) as a function of holdup, inclination angle and phases' relative velocity. However, the data available in the literature on wavy stratified flow is scanty, especially in inclined pipes and when oil is viscous. This paper presents new geometric and kinematic interfacial wave properties as a function of a proposed two-phase Froude number in the wavy-stratified liquid-liquid flow. The experimental work was conducted in a glass test line of 12 m and 0.026 m id., oil (density and viscosity of 828 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and water as the working fluids at several inclinations from horizontal (-20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees). The results suggest a physical relation between wave shape and the hydrodynamic stability of the stratified liquid-liquid flow pattern. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Many growing networks possess accelerating statistics where the number of links added with each new node is an increasing function of network size so the total number of links increases faster than linearly with network size. In particular, biological networks can display a quadratic growth in regulator number with genome size even while remaining sparsely connected. These features are mutually incompatible in standard treatments of network theory which typically require that every new network node possesses at least one connection. To model sparsely connected networks, we generalize existing approaches and add each new node with a probabilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statistics in different regimes. Under preferential attachment for example, slowly accelerating networks display stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for instance, the evolutionary record of single-celled organisms which display strict size and complexity limits.