1000 resultados para Oxide glasses
Resumo:
The southward passage of the Rivera triple junction and its effect on the North American plate are primary controls on the Miocene tectonic evolution of the outer borderland of California. Detrital modes of sand shed off the Patton Ridge and cored by the Deep Sea Drilling Project provide evidence of progressive tectonic erosion of the Patton accretionary prism and neartrench volcanism. Volcanic glass in the sediment is predominantly calcalkaline rhyolite and andesite, typical of subductionrelated volcanism, but also includes minor low-K2O tholeiitic basalt. We attribute these compositional features to interaction with a spreading ridge associated with a possible trench-ridge-trench triple junction along the Patton Escarpment from 18 to 16 Ma. This study suggests that evidence of ridge-trench interaction may be commonly preserved along submerged plate margins, in contrast to its more limited recognition and discussion in the literature based on exposed examples in Chile, Japan and Alaska.
Resumo:
The compositions of 45 natural basalt glasses from nine dredge stations and six Deep Sea Drilling Project Leg 54 sites near 9°N on the East Pacific Rise have been determined by electron microprobe. These comprise 19 distinct chemical groups. Seventeen of these fall in the range of the eastern Pacific tholeiite suite, which is characterized by marked enrichment in FeO*, TiO2, K2O, and P2O5 as CaO, MgO, and Al2O3 all decrease. Based on trace elements, an estimated 50-75 per cent fractionation of plagioclase, clinopyroxene, and olivine is required to produce ferrobasalts from parental olivine tholeiites. Additional chemical variations occur which require source heterogeneities, differences in the degree of melting, different courses of shallow fractionation, or magma mixing to explain. Glass compositions from within the Siqueiros fracture zone are mostly less fractionated than those from the flanks of the Rise, and show chemical differences which require variations in the depth of melting or highpressure fractionation to explain. Some of them could not be parental to East Pacific Rise flank ferrobasalts. Two remaining glass groups, from dredge hauls atop a ridge and a seamount, respectively, have distinctly higher K2O, P2O5, and TiO2 as well as lower CaO/Al2O3 and SiO2 at corresponding values of MgO than the tholeiite suite. These abundances, and whole-rock Y/Zr, Ce/Y, Nb/Zr, and isotopic abundances indicate that these basalts had a deeper, less depleted mantle source than the Rise tholeiite suite. Trace element abundances preclude the "ridge" basalt type from being a hybrid between the "seamount" basalt type and any East Pacific Rise tholeiite so far analyzed. The East Pacific Rise glasses from 9°N compare very closely to glasses dredged and drilled elsewhere on the East Pacific Rise. However, glass compositions from Site 424 on the Galapagos Rift drilled during Leg 54, as well as glasses and basalts dredged from the Galapagos and Costa Rica rifts, indicate that a greater degree of melting prevailed along much of the Galapagos Spreading Center than anywhere along the East Pacific Rise.
Resumo:
We studied the systematics of Cl, F and H2O in Izu arc front volcanic rocks using basaltic through rhyolitic glass shards and melt inclusions (Izu glasses) from Oligocene to Quaternary distal fallout tephra. These glasses are low-K basalts to rhyolites that are equivalent to the Quaternary lavas of the Izu arc front (Izu VF). Most of the Izu glasses have Cl ~400-4000 ppm and F ~70-400 ppm (normal-group glasses). Rare andesitic melt inclusions (halogen-rich andesites; HRA) have very high abundances of Cl (~6600-8600 ppm) and F (~780-910 ppm), but their contents of incompatible large ion lithophile elements (LILE) are similar to the normal-group glasses. The preeruptive H2O of basalt to andesite melt inclusions in plagioclase is estimated to range from ~2 to ~10 wt% H2O. The Izu magmas should be undersaturated in H2O and the halogens at their preferred levels of crystallization in the middle to lower crust (~3 to ~11 kbar, ~820° to ~1200°C). A substantial portion of the original H2O is lost due to degassing during the final ascent to surface. By contrast, halogen loss is minor, except for loss of Cl from siliceous dacitic and rhyolitic compositions. The behavior of Cl, F and H2O in undegassed melts resembles the fluid mobile LILE (e.g.; K, Rb, Cs, Ba, U, Pb, Li). Most of the Cl (>99%), H2O (>95%) and F (>53%) in the Izu VF melts appear to originate from the subducting slab. At arc front depths, the slab fluid contains Cl = 0.94+/-0.25 wt%, F = 990+/-270 ppm and H2O = 25+/-7 wt%. If the subducting sediment and the altered basaltic crust were the only slab sources, then the subducted Cl appears to be almost entirely recycled at the Izu arc (~77-129%). Conversely, H2O (~13-22% recycled at arc) and F (~4-6% recycled) must be either lost during shallow subduction or retained in the slab to greater depths. If a seawater-impregnated serpentinite layer below the basaltic crust were an additional source of Cl and H2O, the calculated percentage of Cl and H2O recycled at arc would be lower. Extrapolating the Izu data to the total length of global arcs (~37000 km), the global arc outflux of fluid-recycled Cl and H2O at subduction zones amounts to Cl ~2.9-3.8 mln ton/yr and H2O ~70-100 mln ton/yr, respectively - comparable to previous estimates. Further, we obtain a first estimate of global arc outflux of fluid-recycled F of ~0.3-0.4 mln ton/yr. Despite the inherent uncertainties, our results support models suggesting that the slab becomes strongly depleted in Cl and H2O in subduction zones. In contrast, much of the subducted F appears to be returned to the deep mantle, implying efficient fractionation of Cl and H2O from F during the subduction process. However, if slab devolatilization produces slab fluids with high Cl/F (~9.5), slab melting will still produce components with low Cl/F ratios (~0.9), similar to those characteristic of the upper continental crust (Cl/F ~0.3-0.9).
Resumo:
Detailed petrochemical and geochemical studies of two samples of palagonitized basalts collected from depths 3060 and 4800 m have shown that palagonitization of tholeiitic basalt is accompanied by intensive removal of Ca and Mg and some removal of SiO2 from rocks. Appreciable amount of K is added to rocks in this process. Behavior of Fe, Al, Ti, Cr, and Na is inert. Palagonitization of alkalic basalt is accompanied by loss of SiO2, Ca, and Na from rocks. Contents of K and Mg are not changed. Four stages can be discerned in alteration of basalts under deep-sea conditions: syngenetic and diffusional palagonitization, hydrothermal leaching, and underwater weathering. Crusts of Fe-Mn ores are formed through removal of Fe, Mn, Ni, Co, Sn, and Mo from rocks and sorption of Pb, Hg, Yb, La, Bi, W, and Be from sea water.
Resumo:
Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO*/MgO ratio (0.95 with total Fe as FeO), and Mg# (100 Mg/Mg + Fe" = 70), sample 483-17-2-(78-83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a La/Sm_cn (chondrite-normalized) = 0.36, and Eu/Sm_cn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (Eu/Sm_cn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78-83) to form the least differentiated sample with Mg# = 63. The La/Sm_cn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher La/Sm_cn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower La/Sm_cn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78-83) is required.