861 resultados para Oxidative damage
Resumo:
Fish Lateolabrax japonicus were exposed to 0.1 and 1 mg/L of anion surfactant sodium dodecylbenzene sulfonate (SDBS) and to 2 and 20 mu g/L of benzo[a]pyrene (B[a]P) for 6, 12, and 18 days, with control and solvent control groups. Liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and glutathione S-transferase (GST), were determined; brain acetyleholinesterase (AChE) and liver inducible nitric oxide synthase (iNOS) activities were also measured. The results indicated that (1) L. japonicus avoided oxidative damage through antioxidant systems; (2) SOD, GPx, and GSH were induced, and GST was inhibited and then induced by B[a]P exposure; and (3) CAT, GPx, and AChE were induced while NOS was inhibited, and GST was induced and then inhibited by SDBS stress in experimental period. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Antioxidant activity of kappa-carrageenan oligosaccharides (OM) and their chemical modification derivatives was investigated employing various established in vitro systems, such as reducing power, iron ion chelation, and total antioxidant activity using beta-carotene-linoleic acid system. The oversulfated (SD), lowly (LAD), and highly acetylated derivatives (HAD) in reducing power assay, the phosphorylated derivative (PD) in metal chelating assay, and oversulfated and phosphorylated derivatives in total antioxidant activity assay exhibited antioxidant activity higher than that of carrageenan oligosaccharides. The results indicated that the chemical modification of carrageenan oligosaccharides can enhance their antioxidant activity in vitro. The protective effects of the carrageenan oligosaccharides and their chemically modified derivatives against H2O2 and UVA (long-wave ultraviolet radiation) induced oxidative damage on rat thymic lymphocyte were investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT). Thymic lymphocyte exposure to H2O2 and UVA, a marked reduction in cell survival was observed, which was significantly prevented by carrageenan oligosaccharides and their derivatives (preincubated for 2 h) at 66.7-2000 mu g/mL. But both the carrageenan oligosaccharides and their different derivatives showed the similar protective effects on intracellular level. Taken together, these results suggest that carrageenan oligosaccharides and their derivatives show relevant antioxidant activity both in vitro and in a cell system. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of 'exercise intolerance', is to compare the skeletal-muscle tissue of McArdle, heterozygous, and healthy (wild type (wt)) mice. We analyzed in quadriceps muscle of p.R50X/p.R50X (n=4), p.R50X/wt (n=6) and wt/wt mice (n=5) (all male, 8 wk-old) molecular markers of energy-sensing pathways, oxidative phosphorylation (OXPHOS) and autophagy/proteasome systems, oxidative damage and sarcoplamic reticulum (SR) Ca handling. We found a significant group effect for total AMPK (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P=0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice vs. the other two groups. The absence of massive accumulation of ubiquitinated proteins, autophagosomes or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice vs. the other two groups (P=0.036) but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P=0.011). Sarco(endo)plasmic reticulum ATPase 1 (SERCA1) levels detected at 110kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P=0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated SERCA1 in p.R50X/p.R50X animals. Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in OXPHOS capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.
Resumo:
Ian M. Scott, Shannon M. Clarke, Jacqueline E. Wood and Luis A.J. Mur (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135(2), 1040-1049. RAE2008
Resumo:
The present study aimed to investigate interactions of components in the high solids systems during storage. The systems included (i) lactose–maltodextrin (MD) with various dextrose equivalents at different mixing ratios, (ii) whey protein isolate (WPI)–oil [olive oil (OO) or sunflower oil (SO)] at 75:25 ratio, and (iii) WPI–oil– {glucose (G)–fructose (F) 1:1 syrup [70% (w/w) total solids]} at a component ratio of 45:15:40. Crystallization of lactose was delayed and increasingly inhibited with increasing MD contents and higher DE values (small molecular size or low molecular weight), although all systems showed similar glass transition temperatures at each aw. The water sorption isotherms of non-crystalline lactose and lactose–MD (0.11 to 0.76 aw) could be derived from the sum of sorbed water contents of individual amorphous components. The GAB equation was fitted to data of all non-crystalline systems. The protein–oil and protein–oil–sugar materials showed maximum protein oxidation and disulfide bonding at 2 weeks of storage at 20 and 40°C. The WPI–OO showed denaturation and preaggregation of proteins during storage at both temperatures. The presence of G–F in WPI–oil increased Tonset and Tpeak of protein aggregation, and oxidative damage of the protein during storage, especially in systems with a higher level of unsaturated fatty acids. Lipid oxidation and glycation products in the systems containing sugar promoted oxidation of proteins, increased changes in protein conformation and aggregation of proteins, and resulted in insolubility of solids or increased hydrophobicity concomitantly with hardening of structure, covalent crosslinking of proteins, and formation of stable polymerized solids, especially after storage at 40°C. We found protein hydration transitions preceding denaturation transitions in all high protein systems and also the glass transition of confined water in protein systems using dynamic mechanical analysis.
Resumo:
Epilobium parviflorum Schreb. (Onagraceae) is used for the treatment of benign prostatic hyperplasia (BPH), but its biological action is not entirely identified. This paper aims to report data on E. parviflorum with respect to its antioxidant and antiinflammatory effects. The aqueous acetone extract of E. parviflorum showed higher antioxidant effect in the DPPH assay than well known antioxidants and inhibited the lipid peroxidation determined by the TBA assay (IC(50) = 2.37 +/- 0.12 mg/mL). In concentrations of 0.2-15.0 microg/mL the extract possessed a protective effect, comparable to catalase (250 IU/mL), against oxidative damage, generated in fibroblast cells. In the COX inhibition assay E. parviflorum decreased the PGE(2) release, so showing inhibition of the COX-enzyme (IC(50) = 1.4 +/- 0.1 microg/mL).
Resumo:
Epilobium parviflorum Schreb. (Onagraceae) is used for the treatment of benign prostatic hyperplasia (BPH), which is regarded as an endocrine disorder caused by age-related hormone imbalance and increased oxidative damage [1,2,3]. Epilobium can moderate the obstructive and the irritative symptoms of BPH [1] but its biological action is not entirely identified. E. parviflorum is rich in phytosterols, flavonoids (myricetin, quercetin, kaempferol and their glycosides), phenolic acids, catechins, ellagi- and gallotannins [4]. The potential biological effects of Epilobium parviflorum Schreb. have been investigated, in respect to its antioxidant, anti-inflammatory, enzyme-inhibitory and anti-androgenic effect. The whole-plant water extract showed higher antioxidant effect (IC50=1.65±0.05µg/mL) in DPPH assay than Trolox or ascorbic acid and inhibited the lipid peroxidation examined in TBA assay (IC50=2.31±0.18mg/mL). In concentrations 0.20-15.00µg/mL the extract possessed a protective effect comparable to catalase enzyme (2500 IU/mL), against oxidative damage generated on fibroblast cells. The examination of the COX-inhibitory effect showed that E. parviflorum had an anti-inflammatory effect (IC50=1.38±0.08µg/mL). Investigation of steroid receptor binding ability and the aromatase enzyme-inhibition showed negative results in the concentration range examined.
Resumo:
Fibrillar deposits of alpha-synuclein occur in several neurodegenerative diseases. Two mutant forms of alpha-synuclein have been associated with early-onset Parkinson's disease, and a fragment has been identified as the non-amyloid-beta peptide component of Alzheimer's disease amyloid (NAC). Upon aging, solutions of alpha-synuclein and NAC change conformation to beta-sheet, detectable by CD spectroscopy, and form oligomers that deposit as amyloid-like fibrils, detectable by electron microscopy. These aged peptides are also neurotoxic. Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified. NAC(8-18) is the smallest fragment that aggregates, as indicated by the concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. Fragments NAC(8-18) and NAC(8-16) are toxic, whereas NAC(12-18), NAC(9-16) and NAC(8-15) are not. Hence residues 8-16 of NAC comprise the region crucial for toxicity. Toxicity induced by alpha-synuclein, NAC and NAC(1-18) oligomers occurs via an apoptotic mechanism, possibly initiated by oxidative damage, since these peptides liberate hydroxyl radicals in the presence of iron. Molecules with anti-aggregational and/or antioxidant properties may therefore be potential therapeutic agents.
Resumo:
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met(29) > Met(30) > Met(13), with Met(79) being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Age-related macular degeneration (AMD), is the leading cause of blind registration in the Western World among individuals 65 years or older. Early AMD, a clinical state without overt functional loss, is said to be present clinically when yellowish deposits known as drusen and/or alterations of fundus pigmentation are seen in the macular retina. Although the etiopathogenesis of AMD remains uncertain, there is a growing body of evidence in support of the view that cumulative oxidative damage plays a causal role. Appropriate dietary antioxidant supplementation is likely to be beneficial in maintaining visual function in patients with AMD, and preventing or delaying the progression of early AMD to late AMD. The Carotenoids in Age-Related Maculopathy (CARMA) Study is a randomized and double-masked clinical trial of antioxidant supplementation versus placebo in 433 participants with either early AMD features of sufficient severity in at least one eye or any level of AMD in one eye with late AMD (neovascular AMD or central geographic atrophy) in the fellow eye. The aim of the CARMA Study is to investigate whether lutein and zeaxanthin, in combination with co-antioxidants (vitamin C, E, and zinc), has a beneficial effect on visual function and/or prevention of progression from early to late stages of disease. The primary outcome is improved or preserved distance visual acuity at 12 months. Secondary outcomes include improved or preserved interferometric acuity, contrast sensitivity, shape discrimination ability, and change in AMD severity as monitored by fundus photography. This article outlines the CARMA Study design and methodology, including its rationale.
Resumo:
Emerging science supports therapeutic roles of strawberries, blueberries, and cranberries in metabolic syndrome, a prediabetic state characterized by several cardiovascular risk factors. Interventional studies reported by our group and others have demonstrated the following effects: strawberries lowering total and LDL-cholesterol, but not triglycerides, and decreasing surrogate biomarkers of atherosclerosis (malondialdehyde and adhesion molecules); blueberries lowering systolic and diastolic blood pressure and lipid oxidation and improving insulin resistance; and low-calorie cranberry juice selectively decreasing biomarkers of lipid oxidation (oxidized LDL) and inflammation (adhesion molecules) in metabolic syndrome. Mechanistic studies further explain these observations as up-regulation of endothelial nitric oxide synthase activity, reduction in renal oxidative damage, and inhibition of the activity of carbohydrate digestive enzymes or angiotensin-converting enzyme by these berries. These findings need confirmation in future studies with a focus on the effects of strawberry, blueberry, or cranberry intervention in clinical biomarkers and molecular mechanisms underlying the metabolic syndrome.
Resumo:
We determined whether oxidative damage in collagen is increased in (1) patients with diabetes; (2) patients with diabetic complications; and (3) subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, with comparison of subjects from the former standard vs intensive treatment groups 4 years after DCCT completion.
Resumo:
Risk factors for the microvascular complications (nephropathy and retinopathy) of Type 1 and Type 2 diabetes mellitus and the associated accelerated atherosclerosis include: age, diabetes duration, genetic factors, hyperglycaemia, hypertension, smoking, inflammation, glycation and oxidative stress and dyslipoproteinaemia. Hypertriglyceridaemia, low HDL and small dense LDL are common features of Type 2 diabetes and Type 1 diabetes with poor glycaemic control or renal complications. With the expansion of knowledge and of clinical and research laboratory tools, a broader definition of 'lipid' abnormalities in diabetes is appropriate. Dyslipoproteinaemia encompasses alterations in lipid levels, lipoprotein subclass distribution, composition (including modifications such as non-enzymatic glycation and oxidative damage), lipoprotein-related enzymes, and receptor interactions and subsequent cell signaling. Alterations occur in all lipoprotein classes; chylomicrons, VLDL, LDL, HDL, and Lp(a). There is also emerging evidence implicating lipoprotein related genotypes in the development of diabetic nephropathy and retinopathy. Lipoprotein related mechanisms associated with damage to the cardiovascular system may also be relevant to damage to the renal and ocular microvasculature. Adverse tissue effects are mediated by both alterations in lipoprotein function and adverse cellular responses. Recognition and treatment of lipoprotein-related risk factors, supported by an increasing array of assays and therapeutic agents, may facilitate early recognition and treatment of high complication risk diabetic patients. Further clinical and basic research, including intervention trials, is warranted to guide clinical practice. Optimal lipoprotein management, as part of a multi-faceted approach to diabetes care, may reduce the excessive personal and economic burden of microvascular complications and the related accelerated atherosclerosis.
Resumo:
The chronic vascular complications of diabetes (nephropathy, retinopathy and accelerated atherosclerosis) are a major cause of morbidity and premature mortality. In spite of the more widespread availability of intensive diabetes management, approximately one in three people with diabetes develop aggressive complications and over 70% die of atherosclerosis-related diseases. Genetic and acquired factors are likely to be contributory. Potential mediators of vascular damage may include the interrelated processes of lipoprotein abnormalities, glycation, oxidation and endothelial dysfunction. Lipoprotein abnormalities encompass alterations in lipid concentrations, lipoprotein composition and subclass distribution and lipoprotein-related enzymes. Nonenzymatic glycation and oxidative damage to lipoproteins, other proteins and to vascular structures may also be deleterious. As atherosclerosis is a chronic condition commencing in youth, and because clinical events may be silent in diabetes, surrogate measures of vascular disease are important for early identification of diabetic patients with or at high risk of vascular damage, and for monitoring efficacy of interventions. The increasing array of biochemical assays for markers and mediators of vascular damage, noninvasive measures of vascular health, and therapeutic options should enable a reduction in the excessive personal and economic burden of vascular disease in type 1 and type 2 diabetes.
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.