212 resultados para Osmolytes organiques
Abordagem fotomorfogenética para explorar o estresse abiótico em tomateiro (Solanum lycopersicum L.)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
Viral infections account for over 13 million deaths per year. Antiviral drugs and vaccines are the most effective method to treat viral diseases. Antiviral compounds have revolutionized the treatment of AIDS, and reduced the mortality rate. However, this disease still causes a large number of deaths in developing countries that lack these types of drugs. Vaccination is the most effective method to treat viral disease; vaccines prevent around 2.5 million deaths per year. Vaccines are not able to offer full coverage due to high operational costs in the manufacturing processes. Although vaccines have saved millions of lives, conventional vaccines often offer reactogenic effects. New technologies have been created to eliminate the undesired side effects. However, new vaccines are less immunogenic and adjuvants such as vaccine delivery vehicles are required. This work focuses on the discovery of new natural antivirals that can reduce the high cost and side effects of synthetic drugs. We discovered that two osmolytes, trimethylamine N-oxide (TMAO) and glycine reduce the infectivity of a model virus, porcine parvovirus (PPV), by 4 LRV (99.99%), likely by disruption of capsid assembly. These osmolytes have the potential to be used as drugs, since they showed antiviral activity after 20 h. We have also focused on improving current vaccine manufacturing processes that will allow fast, effective and economical vaccines to be produced worldwide. We propose virus flocculation in osmolytes followed by microfiltration as an economical alternative for vaccine manufacturing. Osmolytes are able to specifically flocculate hydrophobic virus particles by depleting a hydration layer around the particles and subsequently cause virus aggregation. The osmolyte mannitol was able to flocculate virus particles, and demonstrate a high virus removal, 81% for PPV and 98.1% for Sindbis virus (SVHR). Virus flocculation with mannitol, followed by microfiltration could be used as a platform process for virus purification. Finally, we perform biocompatibility studies on soft-templated mesoporous carbon materials with the aim of using these materials as vaccine delivery vehicles. We discovered that these materials are biocompatible, and the degree of biocompatibility is within the range of other biomaterials currently employed in biomedical applications.
Resumo:
Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.
Resumo:
Connus sous le nom populaire de palafittes, les habitats préhistoriques construits sur les rives des lacs subalpins du Néolithique à l’aube de l’âge du Fer (entre 5300 et 700 av. J.-C.) offrent des informations exceptionnelles sur l’évolution culturelle d’une importante région européenne, grâce à la préservation remarquable des matériaux organiques, en particulier du bois. À partir de la deuxième moitié du XXe siècle, le perfectionnement des techniques de fouille subaquatiques et de la dendrochronologie permettront la construction d’un schéma chronologique précis pour l’Europe nord-alpine. Les recherches contribueront à des observations d’ordre écologique à l’échelle locale et régionale et à l’identification des rythmes de développement des villages. Sous l’égide de l'UNESCO, les années 2010 verront la constitution d’un inventaire vaste et uniforme des sites préhistoriques des lacs circumalpins, classés Patrimoine culturel mondial en juin 2011. De nombreux objets préhistoriques, romains et médiévaux ont été découverts entre 2003 et 2010, au Schnidejoch, un col des Alpes bernoises occidentales à 2756 m d’altitude, à la frontière entre les cantons de Berne et du Valais. Les hautes températures de l'été 2003 ont provoqué la fonte d'un petit champ de glace et mis en lumière les vestiges. Les recherches ont été programmées à la suite d’une série d’informations fournies par des randonneurs. Les objets en matière organique (bois, écorce de bouleau, cuir, fibres végétales) revêtent une très grande importance car ils ont permis l’obtention de plus d’une cinquantaine de datations radiocarbone ; elles indiquent le passage du col entre la moitié du Ve millénaire av. J.-C. et l’année 1000 de notre ère. En outre, les séries de datations suggèrent l’alternance de périodes de praticabilité et d’inaccessibilité du col. Le Schnidejoch est actuellement le plus ancien témoignage de la traversée des Alpes, reliant l‘Oberland bernois par les vallées de la Simme et du Rhône.
Les villages préhistoriques des bords des lacs circum-alpins entre le Ve et IVe millénaire av. J.-C.
Resumo:
Connus sous le nom populaire de palafittes, les habitats préhistoriques construits sur les rives des lacs subalpins du Néolithique à l’aube de l’âge du Fer (entre 5300 et 700 av. J.-C.) offrent des informations exceptionnelles sur l’évolution culturelle d’une importante région européenne, grâce à la préservation remarquable des matériaux organiques, en particulier du bois. À partir de la deuxième moitié du XXe siècle, le perfectionnement des techniques de fouille subaquatiques et de la dendrochronologie permettront la construction d’un schéma chronologique précis pour l’Europe nord-alpine. Les recherches contribueront à des observations d’ordre écologique à l’échelle locale et régionale et à l’identification des rythmes de développement des villages. Sous l’égide de l'UNESCO, les années 2010 verront la constitution d’un inventaire vaste et uniforme des sites préhistoriques des lacs circumalpins, classés Patrimoine culturel mondial en juin 2011.
Resumo:
It is widely assumed that the ability of an introduced species to acclimate to local environmental conditions determines its invasion success. The sea anemone Diadumene lineata is a cosmopolitan invader and shows extreme physiological tolerances. It was recently discovered in Kiel Fjord (Western Baltic Sea), although the brackish conditions in this area are physiologically challenging for most marine organisms. This study investigated salinity tolerance in D. lineata specimens from Kiel Fjord in order to assess potential geographical range expansion of the species in the Baltic Sea. In laboratory growth assays, we quantified biomass change and asexual reproduction rates under various salinity regimes (34: North Sea, 24: Kattegat, 14: Kiel Fjord, 7: Baltic Proper). Furthermore, we used 1H-NMR-based metabolomics to analyse intracellular osmolyte dynamics. Within 4 weeks D. lineata exhibited a 5-fold population growth through asexual reproduction at high salinities (34 and 24). Biomass increase under these conditions was significantly higher (69%) than at a salinity of 14. At a salinity of 7, anemones ceased to reproduce asexually, their biomass decreased and metabolic depression was observed. Five main intracellular osmolytes were identified to be regulated in response to salinity change, with osmolyte depletion at a salinity of 7. We postulate that depletion of intracellular osmolytes defines a critical salinity (Scrit) that determines loss of fitness. Our results indicate that D. lineata has the potential to invade the Kattegat and Skagerrak regions with salinity >10. However, salinities of the Baltic Proper (salinity <8) currently seem to constitute a physiological limit for the species.
Resumo:
The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. BIOLOGICAL SIGNIFICANCE: The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress.
Resumo:
Hypertonicity (most often present as high salinity) is stressful to the cells of virtually all organisms. Cells survive in a hypertonic environment by increasing the transcription of genes whose products catalyze cellular accumulation of compatible osmolytes. In mammals, the kidney medulla is normally hypertonic because of the urinary concentrating mechanism. Cellular accumulation of compatible osmolytes in the renal medulla is catalyzed by the sodium/myo-inositol cotransporter (SMIT), the sodium/chloride/betaine cotransporter, and aldose reductase (synthesis of sorbitol). The importance of compatible osmolytes is underscored by the necrotic injury of the renal medulla and subsequent renal failure that results from the inhibition of SMIT in vivo by administration of a specific inhibitor. Tonicity-responsive enhancers (TonE) play a key role in hypertonicity-induced transcriptional stimulation of SMIT, sodium/chloride/betaine cotransporter, and aldose reductase. We report the cDNA cloning of human TonE binding protein (TonEBP), a transcription factor that stimulates transcription through its binding to TonE sequences via a Rel-like DNA binding domain. Western blot and immunohistochemical analyses of cells cultured in hypertonic medium reveal that exposure to hypertonicity elicits slow activation of TonEBP, which is the result of an increase in TonEBP amount and translocation to the nucleus.
Resumo:
It recently was proposed [Loo, D. D. F., Zeuthen, T., Chandy, G. & Wright, E. M. (1996) Proc. Natl. Acad. Sci. USA 93, 13367–13370] that SGLT1, the high affinity intestinal and renal sodium/glucose cotransporter carries water molecules along with the cosubstrates with a strict stoichiometry of two Na+, one glucose, and ≈220 water molecules per transport cycle. Using electrophysiology together with sensitive volumetric measurements, we investigated the nature of the driving force behind the cotransporter-mediated water flux. The osmotic water permeability of oocytes expressing human SGLT1 (Lp ± SE) averaged 3.8 ± 0.3 × 10−4 cm⋅s−1 (n = 15) and addition of 100 μM phlorizin (a specific SGLT1 inhibitor) reduced the permeability to 2.2 ± 0.2 × 10−4 cm⋅s−1 (n = 15), confirming the presence of a significant water permeability closely associated with the cotransporter. Addition of 5 mM α-methyl-glucose (αMG) induced an average inward current of 800 ± 10 nA at −50 mV and a water influx reaching 120 ± 20 pL cm−2 ⋅s−1 within 5–8 min. After rapidly inhibiting the Na+/glucose cotransport with phlorizin, the water flux remained significantly elevated, clearly indicating the presence of a local osmotic gradient (Δπ) estimated at 16 ± 2 mOsm. In short-term experiments, a rapid depolarization from −100 to 0 mV in the presence of αMG decreased the cotransport current by 94% but failed to produce a comparable reduction in the swelling rate. A mathematical model depicting the intracellular accumulation of transported osmolytes can accurately account for these observations. It is concluded that, in SGLT1-expressing oocytes, αMG-dependent water influx is induced by a local osmotic gradient by using both endogenous and SGLT1-dependent water permeability.