985 resultados para Organic pollution
Resumo:
In the last decades, the effects of the air pollution have been increasing, especially in the case of the human health diseases. In order to overcome this problem, scientists have been studying the components of the air. As a part of water-soluble organic compounds, amino acids are present in the atmospheric environment as components of diverse living organisms which can be responsible for spreading diseases through the air. Liquid chromatography is one technique capable of distinguish the different amino acids from each other. In this work, aiming at separating the amino acids found in the aerosols samples collected in Aveiro, the ability of four columns (Mixed-Mode WAX-1, Mixed-Mode HILIC-1, Luna HILIC and Luna C18) to separate four amino acids (aspartic acid, lysine, glycine and tryptophan) and the way the interaction of the stationary phases of the columns with the analytes is influenced by organic solvent concentration and presence/concentration of the buffer, are being assessed. In the Mixed-Mode WAX-1 column, the chromatograms of the distinct amino acids revealed the separation was not efficient, since the retention times were very similar. In the case of lysine, in the elution with 80% (V/V) MeOH, the peaks appeared during the volume void. In the Mixed-Mode HILIC-1 column, the variation of the organic solvent concentration did not affect the elution of the four studied amino acids. Considering the Luna HILIC column, the retention times of the amino acids were too close to each other to ensure a separation among each other. Lastly, the Luna C18 column revealed to be useful to separate amino acids in a gradient mode, being the variation of the mobile phase composition in the organic solvent concentration (ACN). Luna C18 was the column used to separate the amino acids in the real samples and the mobile phase had acidified water and ACN. The gradient consisted in the following program: 0 – 2 min: 5% (V/V) ACN, 2 – 8 min: 5 – 2 % (V/V) ACN, 8 – 16 min: 2% (V/V) ACN, 16 – 20 min: 2 – 20 % (V/V) ACN, 20 – 35 min: 20 – 35 % (V/V) ACN. The aerosols samples were collected by using three passive samplers placed in two different locations in Aveiro and each sampler had two filters - one faced up and the other faced down. After the sampling, the water-soluble organic compounds was extracted by dissolution in ultra-pure water, sonication bath and filtration. The resulting filtered solutions were diluted in acidified water for the chromatographic separation. The results from liquid chromatography revealed the presence of the amino acids, although it was not possible to identify each one of them individually. The chromatograms and the fluorescence spectra showed the existence of some patterns: the samples that correspond to the up filters had more intense peaks and signals, revealing that the up filters collected more organic matter.
Resumo:
The main objective of the present thesis consists on the development of an analytical preconcentration technology for the concomitant extraction and concentration of human pollution tracers from wastewater streams. Due to the outstanding tunable properties of ionic liquids (ILs), aqueous biphasic systems (ABS) composed of ILs can provide higher and more selective extraction efficiencies for a wide range of compounds, being thus a promising alternative to the volatile and hazardous organic solvents (VOCs) typically used. For that purpose, IL-based ABS were employed and adequately characterized as an one-step extraction and concentration technique. The applicability of IL-based ABS was verified by their potential to completely extract and concentrate two representative pharmaceutical pollution tracers, namely caffeine (CAF) and carbamazepine (CBZ), from wastewaters. The low concentration of these persistent pollutants (usually found in μg·dm-3 and ng·dm-3 levels, respectively) by conventional analytical equipment does not permit a proper detection and quantification without a previous concentration step. Preconcentration methods commonly applied are costly, timeconsuming, with irregular recoveries and make use of VOCs. In this work, the ABS composed of the IL tetrabutylammonium chloride ([N4444]Cl) and the salt potassium citrate (K3[C6H5O7]) was investigated while demonstrating to be able to completely extract and concentrate CAF and CBZ, in a single-step, overcoming thus the detection limit of the applied analytical equipment. Finally, the hydrotropic effect responsible for the ability of IL-based ABS to extract and concentrate a wide variety of compounds was also investigated. It was shown that the IL rules the hydrotropic mechanism in the solubility of CAF in aqueous solutions, with an increase in solubility up to 4-fold. Moreover, the proper selection of the IL enables the design of the system that leads to a more enhanced solubility of a given solute in the IL-rich phase, while allowing a better extraction and concentration. IL-based ABS are a promising and more versatile technique, and are straightforwardly envisaged as selective extraction and concentration routes of target micropollutants from wastewater matrices.
Resumo:
In this study, the effect of anti-corrosion inhibitor addition to epoxy coating, on the disbanding rate was evaluated. First to determination of mechanism, the bare steel substrates were immersed in the 3.5% NaCl solution and the solution containing 1 mM anti corrosion. The Electrochemical Impedance Spectroscopy was performed after 5 and 24 hour. The results indicated a lower corrosion rate in the presence of inhibitor. During the time, charge transfer resistance, was decreased for the substrates immersed in NaCl solution, and increased for the substrates immersed in NaCl solution containing 1 mM anti corrosion. This result can be related to more stability of corrosion products in presence of anti-corrosion and film formation. The coated substrates, with four different concentration of anticorrosion in coating, were protected under -1.2 voltage in the 3.5% NaCl solution. After 12 and 24 hour, the EIS test and disbanding area measurement, were evaluate. The lower disbanding rate, more charge transfer resistance and less double layer capacitance for the coating containing 0.75w% inhibitor, were observed. The result of Pull-off test after 1 day immersion in 3.5% NaCl solution, showed more wet adhesion for the coating containing 0.75w% inhibitor. The images of FE-SEM electron microscope and surface analyses EDX on the coated substrate after disbanding and the bare substrate immersed in 3.5w% NaCl containing 1 mM inhibitor, were proved the formation of stabilized film.
Resumo:
Aging process is conceived as a normal stage during human life cycle, but it is also considered a hot topic among scientists and medical community. Alarming rates of premature aging and oxidative stress-related diseases have increasingly affect human individuals. Stress, pollution and exposition to chemical substances are considered the main triggering factors for those conditions; in addition, they also suppress the immune system and, therefore, improve organic vulnerability and occurrence of opportunistic infections [I]. Apart from the associated morbidity and mortality, the increasing rates of antimicrobial resistance improve the severity of the clinical conditions [2]. Botanical preparations possess a multitude of bioactive properties, namely acting as antimicrobials, antioxidants, and homeostasis modulators. Thus, upcoming alternatives, mainly based in plant phytochemicals, are necessary to improve the wellbeing as also life expectancy of individuals. The present study aims to evaluate and to compare both antioxidant and antimicrobial properties of plant extracts rich in phenolic compounds. Among the tested plants, Glycyrrhiza glabra L. (licorice) evidenced the most pronounced free radicals scavenging and antimicrobial effects, followed by Salvia officina/is L. (sage), Thymus vulgaris L. (thyme) and Origanum vulgare L. (oregano). Eucalyptus globulus Labill. (blue gum) and Juglans regia L. (walnut) also showed a high effect, while Pterospartum tridentatum (L.) Willk. (carqueja) and Rubus ulmifolius Schott (elm leaf blackberry) displayed moderate effects, and lastly, Tabebuia impetigirwsa (Mart. ex DC) Standley (pau d'arco), Foeniculum vulgare Miller (fennel), Rosa canina L. (rose hips) and Matricaria recutita L. (chamomile) gave only slight effects. In general, the most pronounced bioactivities were observed in the plant preparations (infusion>decoction>hydromethanolic extract) with higher levels of phenolic compounds (both flavonoids and phenolic acids). The observed synergisms between the phenolic compounds present in the extracts highlight the use of phytochemicals as future health promoters. However, further studies are necessary to understand the effective mode of action of individual phenolic constituents as also the existence of polyvalence relationships between them.
Resumo:
Air pollution levels were monitored continuously over a period of 4 weeks at four sampling sites along a busy urban corridor in Brisbane. The selected sites were representative of industrial and residential types of urban environment affected by vehicular traffic emissions. The concentration levels of submicrometer particle number, PM2.5, PM10, CO, and NOx were measured 5-10 meters from the road. Meteorological parameters and traffic flow rates were also monitored. The data were analysed in terms of the relationship between monitored pollutants and existing ambient air quality standards. The results indicate that the concentration levels of all pollutants exceeded the ambient air background levels, in certain cases by up to an order of magnitude. While the 24-hr average concentration levels did not exceed the standard, estimates for the annual averages were close to, or even higher than the annual standard levels.
Resumo:
The occurrence and levels of airborne polycyclic aromatic hydrocarbons and volatile organic compounds in selected non-industrial environments in Brisbane have been investigated as part of an integrated indoor air quality assessment program. The most abundant and most frequently encountered compounds include, nonanal, decanal, texanol, phenol, 2-ethyl-1-hexanol, ethanal, naphthalene, 2,6-tert-butyl-4-methyl-phenol (BHT), salicylaldehyde, toluene, hexanal, benzaldehyde, styrene, ethyl benzene, o-, m- and pxylenes, benzene, n-butanol, 1,2-propandiol, and n-butylacetate. Many of the 64 compounds usually included in the European Collaborative Action method of TVOC analysis were below detection limits in the samples analysed. In order to extract maximum amount of information from the data collected, multivariate data projection methods have been employed. The implications of the information extracted on source identification and exposure control are discussed.
Resumo:
Community awareness and the perception on the traffic noise related health impacts have increased significantly over the last decade resulting in a large volume of public inquiries flowing to Road Authorities for planning advice. Traffic noise management in the urban environment is therefore becoming a “social obligation”, essentially due to noise related health concerns. Although various aspects of urban noise pollution and mitigation have been researched independently, an integrated approach by stakeholders has not been attempted. Although the current treatment and mitigation strategies are predominantly handled by the Road Agencies, a concerted effort by all stakeholders is becoming mandatory for effective and tangible outcomes in the future. A research project is underway a RMIT University, Australia, led by the second author to consider the use of “hedonic pricing” for alternative noise amelioration treatments within the road reserve and outside the road reserve. The project aims to foster a full range noise abatement strategy encompassing source, path and noise receiver. The benefit of such a study would be to mitigate the problem where it is most effective and would defuse traditional “authority” boundaries to produce the optimum outcome. The project is conducted in collaboration with the Department of Main Roads Queensland, Australia and funded by the CRC for Construction Innovation. As part of this study, a comprehensive literature search is currently underway to investigate the advancements in community health research, related to environmental noise pollution, and the advancements in technical and engineering research in mitigating the issue. This paper presents the outcomes of this work outlining state of the art, national and international good practices and gap analysis to identify major anomalies and developments.
Resumo:
Edith Penrose’s theory of firm growth postulates that a firm’s current growth rate will be influenced by the adjustment costs of, and changes to a firm’s productive opportunity set arising from, previous growth. Although she explicitly considered the impact of previous organic growth on current organic growth, she was largely silent about the impact of previous acquisitive growth. In this paper we extend Penrose’s work to examine that the relative impact of organic and acquisitive growth on the adjustment costs and productive opportunity set of the firm. Employing a panel of commercially active enterprises in Sweden over a 10 year period our results suggest the following. First, previous organic growth acts as a constraint on current organic growth. Second, previous acquisitive growth has a positive effect on current organic growth. We conclude that organic growth and acquisitive growth constitute two distinct strategic options facing the firm, which have a differential impact on the future organic growth of the firm.