922 resultados para Order of magnitude
Resumo:
The experimental portion of this thesis tries to estimate the density of the power spectrum of very low frequency semiconductor noise, from 10-6.3 cps to 1. cps with a greater accuracy than that achieved in previous similar attempts: it is concluded that the spectrum is 1/fα with α approximately 1.3 over most of the frequency range, but appearing to have a value of about 1 in the lowest decade. The noise sources are, among others, the first stage circuits of a grounded input silicon epitaxial operational amplifier. This thesis also investigates a peculiar form of stationarity which seems to distinguish flicker noise from other semiconductor noise.
In order to decrease by an order of magnitude the pernicious effects of temperature drifts, semiconductor "aging", and possible mechanical failures associated with prolonged periods of data taking, 10 independent noise sources were time-multiplexed and their spectral estimates were subsequently averaged. If the sources have similar spectra, it is demonstrated that this reduces the necessary data-taking time by a factor of 10 for a given accuracy.
In view of the measured high temperature sensitivity of the noise sources, it was necessary to combine the passive attenuation of a special-material container with active control. The noise sources were placed in a copper-epoxy container of high heat capacity and medium heat conductivity, and that container was immersed in a temperature controlled circulating ethylene-glycol bath.
Other spectra of interest, estimated from data taken concurrently with the semiconductor noise data were the spectra of the bath's controlled temperature, the semiconductor surface temperature, and the power supply voltage amplitude fluctuations. A brief description of the equipment constructed to obtain the aforementioned data is included.
The analytical portion of this work is concerned with the following questions: what is the best final spectral density estimate given 10 statistically independent ones of varying quality and magnitude? How can the Blackman and Tukey algorithm which is used for spectral estimation in this work be improved upon? How can non-equidistant sampling reduce data processing cost? Should one try to remove common trands shared by supposedly statistically independent noise sources and, if so, what are the mathematical difficulties involved? What is a physically plausible mathematical model that can account for flicker noise and what are the mathematical implications on its statistical properties? Finally, the variance of the spectral estimate obtained through the Blackman/Tukey algorithm is analyzed in greater detail; the variance is shown to diverge for α ≥ 1 in an assumed power spectrum of k/|f|α, unless the assumed spectrum is "truncated".
Resumo:
Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.
Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.
Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.
In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.
Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.
Resumo:
A case study of the reproductive biology of the endemic Hawaiian grouper or hapu’upu’u (Hyporthodus quernus) is presented as a model for comprehensive future studies of economically important epinephelid groupers. Specimens were collected throughout multiple years (1978–81, 1992–93, and 2005–08) from most reefs and banks of the Northwestern Hawaiian Islands. The absence of small males, presence of atretic oocytes and brown bodies in testes of mature males, and both developed ovarian and testicular tissues in the gonads of five transitional fish provided evidence of protogynous hermaphroditism. No small mature males were collected, indicating that Hawaiian grouper are monandrous (all males are sex-changed females). Complementary microscopic criteria also were used to assign reproductive stage and estimate median body sizes (L50) at female sexual maturity and at adult sex change from female to male. The L50 at maturation and at sex change was 580 ±8 (95% confidence interval [CI]) mm total length (TL) and 895 ±20 mm TL, respectively. The adult sex ratio was strongly female biased (6:1). Spawning seasonality was described by using gonadosomatic indices. Females began ripening in the fall and remained ripe through April. A February–June main spawning period that followed peak ripening was deduced from the proportion of females whose ovaries contained hydrated oocytes, postovulatory follicles, or both. Testes weights were not affected by season; average testes weight was only about 0.2% of body weight—an order of magnitude smaller than that for ovaries that peaked at 1–3% of body weight. The species’ reproductive life history is discussed in relation to its management.
Resumo:
EXECUTIVE SUMMARY: At present, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) criteria used to assess whether a population qualifies for inclusion in the CITES Appendices relate to (A) size of the population, (B) area of distribution of the population, and (C) declines in the size of the population. Numeric guidelines are provided as indicators of a small population (less than 5,000 individuals), a small subpopulation (less than 500 individuals), a restricted area of distribution for a population (less than 10,000 km2), a restricted area of distribution for a subpopula-tion (less than 500 km2), a high rate of decline (a decrease of 50% or more in total within 5 years or two generations whichever is longer or, for a small wild population, a decline of 20% or more in total within ten years or three generations whichever is longer), large fluctuations (population size or area of distribution varies widely, rapidly and frequently, with a variation greater than one order of magnitude), and a short-term fluctuation (one of two years or less). The Working Group discussed several broad issues of relevance to the CITES criteria and guidelines. These included the importance of the historical extent of decline versus the recent rate of decline; the utility and validity of incorporating relative population productivity into decline criteria; the utility of absolute numbers for defining small populations or small areas; the appropriateness of generation times as time frames for examining declines; the importance of the magnitude and frequency of fluctuations as factors affecting risk of extinction; and the overall utility of numeric thresh-olds or guidelines.
Resumo:
Tissues from Cook Inlet beluga whales, Delphinapterus leucas, that were collected as part of the Alaska Marine Mammal Tissue Archival Project were analyzed for polychlorinated biphenyls (PCB’s), chlorinated pesticides, and heavy metals and other elements. Concentrations of total PCB’s (ΣPCB’s), total DDT (ΣDDT), chlordane compounds, hexachlorobenzene (HCB), dieldrin, mirex, toxaphene, and hexachlorocyclohexane (HCH) measured in Cook Inlet beluga blubber were compared with those reported for belugas from two Arctic Alaska locations (Point Hope and Point Lay), Greenland, Arctic Canada, and the highly contaminated stock from the St. Lawrence estuary in eastern Canada. The Arctic and Cook Inlet belugas had much lower concentrations (ΣPCB’s and ΣDDT were an order of magnitude lower) than those found in animals from the St. Lawrence estuary. The Cook Inlet belugas had the lowest concentrations of all (ΣPCB’s aver-aged 1.49 ± 0.70 and 0.79 ± 0.56 mg/kg wet mass, and ΣDDT averaged 1.35 ± 0.73 and 0.59 ± 0.45 mg/kg in males and females, respectively). Concentrations in the blubber of the Cook Inlet males were significantly lower than those found in the males of the Arctic Alaska belugas (ΣPCB’s and ΣDDT were about half). The lower levels in the Cook Inlet animals might be due to differences in contaminant sources, food web differences, or different age distributions among the animals sampled. Cook Inlet males had higher mean and median concentrations than did females, a result attributable to the transfer of these compounds from mother to calf during pregnancy and during lactation. Liver concentrations of cadmium and mercury were lower in the Cook Inlet belugas (most cadmium values were <1 mg/kg and mercury values were 0.704–11.42 mg/kg wet mass), but copper levels were significantly higher in the Cook Inlet animals (3.97–123.8 mg/kg wet mass) than in Arctic Alaska animals and similar to those reported for belugas from Hudson Bay. Although total mercury levels were the lowest in the Cook Inlet population, methylmercury concentrations were similar among all three groups of the Alaska animals examined (0.34–2.11 mg/kg wet mass). As has been reported for the Point Hope and Point Lay belugas, hepatic concentrations of silver were re
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
The role of substrate, flow and larval supply to recruitment of the red abalone (Haliotis rufescens)
Resumo:
Precipitous declines in wild populations of the red abalone Haliotis rufescens and the eventual closure of the commercial and southern recreational fishery have led to renewed interest in supplementing wild stocks with hatchery-raised individuals. Most work to date has focused on releasing small juveniles and has had limited success. Although much is known about larval settlement, juvenile survivorship and growth of abalone, there is scanty information on natural processes in the field. The failure of many regulated fisheries worldwide suggests that both the larval and juvenile stages may be important in determining the future population, and that early juvenile mortality is more important than previously believed. This paper presents a series of experiments designed to examine factors and mechanisms that could affect settlement, survivorship, and growth of larvae and early post-settlers in the field. Laboratory trials under different flow regimes showed that red abalone larvae settled preferentially on substrates encrusted with coralline algae, and that settlement was rapid when exposed to crusts compared to other surfaces. Urchin grazing of films appeared to facilitate abalone settlement but only when urchins were removed. Initial field experiments showed that released larvae settled on natural cobble rock, and that settlement was at least one order of magnitude greater when settlement habitats were tented. I then examined post-settlement survivorship at one and two days after settlement, and found that although there was a large amount of variation, on average 10% of released larvae were found as newly-settled recruits after 1 day. Survivorship and growth of recruits were followed over at least one month in both Spring and Fall. Abalone settled at higher densities, survived better and grew faster in the warmer Fall months than in the Spring. The density of month-old abalone recruits was correlated with density of naturally-occurring gastropods in the Spring, but not in the Fall. These results suggest that settlement and survivorship can be extremely variable across space and time, and that oceanographic and local biotic conditions play a role and should be considered when planning larval seeding.
Resumo:
The behaviour of a bowed string depends, among other things, on the frequency, impedance and internal damping of torsional waves on the string. Very little published information is available about these quantities, especially the torsional damping. Measurements of all relevant torsional properties have been made on cello strings of three different constructions. These show that the torsional modes are harmonically spaced to reasonable accuracy, and that the Q factors are approximately equal for all modes of a given string. These torsional Q factors are roughly an order of magnitude smaller than those of the transverse modes of the same string. The torsional wave speed varies somewhat with the tension in the string, decreasing with higher tension. The damping factors are not significantly influenced by tension. These results have been expressed in terms of a novel "reflection function" [1] suitable for direct incorporation into simulations of the bowing process.
Resumo:
We describe a method to explore the configurational phase space of chemical systems. It is based on the nested sampling algorithm recently proposed by Skilling (AIP Conf. Proc. 2004, 395; J. Bayesian Anal. 2006, 1, 833) and allows us to explore the entire potential energy surface (PES) efficiently in an unbiased way. The algorithm has two parameters which directly control the trade-off between the resolution with which the space is explored and the computational cost. We demonstrate the use of nested sampling on Lennard-Jones (LJ) clusters. Nested sampling provides a straightforward approximation for the partition function; thus, evaluating expectation values of arbitrary smooth operators at arbitrary temperatures becomes a simple postprocessing step. Access to absolute free energies allows us to determine the temperature-density phase diagram for LJ cluster stability. Even for relatively small clusters, the efficiency gain over parallel tempering in calculating the heat capacity is an order of magnitude or more. Furthermore, by analyzing the topology of the resulting samples, we are able to visualize the PES in a new and illuminating way. We identify a discretely valued order parameter with basins and suprabasins of the PES, allowing a straightforward and unambiguous definition of macroscopic states of an atomistic system and the evaluation of the associated free energies.
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
Extensive plankton collections were taken during seven September cruises (1990–93) along the inner continental shelf of the northcentral Gulf of Mexico (GOM). Despite the high productivity and availability of food during these cruises, significant small-scale spatial variability was found in larval growth rates for both Atlantic bumper (Chloroscombrus chrysurus, Carangidae) and vermilion snapper (Rhomboplites aurorubens, Lutjanidae). The observed variability in larval growth rates was not correlated with changes in water temperature or associated with conspicuous hydrographic features and suggested the existence of less-recognizable regions where conditions for growth vary. Cruise estimates of mortality coefficients (Z) for larval Atlantic bumper (n=32,241 larvae from six cruises) and vermilion snapper (n= 2581 larvae from four cruises) ranged from 0.20 to 0.37 and 0.19 to 0.29, respectively. Even in a subtropical climate like the GOM, where larval-stage durations may be as short as two weeks, observed variability in growth rates, particularly when combined with small changes in mortality rates, can cause order-of-magnitude differences in cumulative larval survival. To what extent the observed differences in growth rates at small spatial scales are fine-scale “noise” that ultimately is smoothed by larger-scale processes is not known. Future research is needed to further characterize the small-scale variability in growth rates of larvae, particularly with regard to microzooplankton patchiness and the temporal and spatial pattern of potential predators. Small-scale spatial variability in larval growth rates may in fact be the norm, and understanding the implications of this subtle mosaic may help us to better evaluate our ability to partition the causes of recruitment variability.
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.
Resumo:
The sulfide binding characteristics of blood serum were studied in vitro in two deep-sea vesicomyid clams, Calyptogena pacifica and Vesicomya gigas. Both the C. pacifica and the V. gigas serum concentrated sulfide at least an order of magnitude above ambient levels. V. gigas accumulated sulfide faster than C. pacifica, reaching saturation at 5000 M after an hour. C. pacifica bound sulfide at half the rate of V. gigas, reaching saturation in about two hours at a substantially higher concentration of sulfide. The observed distribution of the animals near cold seeps in the Monterey Submarine Canyon can be explained by their different sulfide binding abilities. The hypothesis that cold seeps are actually much more unstable sources of sulfide than previously assumed is explored.
Resumo:
Sintered boron carbide is very hard, and can be an attractive material for wear-resistant components in critical applications. Previous studies of the erosion of less hard ceramics have shown that their wear resistance depends on the nature of the abrasive particles. Erosion tests were performed on a sintered boron carbide ceramic with silica, alumina and silicon carbide erodents. The different erodents caused different mechanisms of erosion, either by lateral cracking or small-scale chipping; the relative values of the hardness of the erodent and the target governed the operative mechanism. The small-scale chipping mechanism led to erosion rates typically an order of magnitude lower than the lateral fracture mechanism. The velocity exponents for erosion in the systems tested were similar to those seen in other work, except that measured with the 125 to 150 μm silica erodent. With this erodent the exponent was initially high, then decreased sharply with increasing velocity and became negative. It was proposed that this was due to deformation and fragmentation of the erodent particles. In the erosion testing of ceramics, the operative erosion mechanism is important. Care must be taken to ensure that the same mechanism is observed in laboratory testing as that which would be seen under service conditions, where the most common erodent is silica.