871 resultados para Orbital fracture
Resumo:
The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.
Resumo:
Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solvent-shared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.
Resumo:
In this work, static and drop-weight impact experiments, which have been conducted using three-point bend fracture specimens of a high-strength low-alloy steel, are analysed by performing finite-element simulations. The Gurson constitutive model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and is employed within the framework of a finite deformation plasticity theory. Two populations of second-phase particles are considered, including large inclusions which initiate voids at an early stage and small particles which require large strains to nucleate voids. The most important objective of the work is to assess quantitatively the effects of material inertia, strain rate sensitivity and local adiabatic temperature rise (due to conversion of plastic work into heat) on dynamic ductile crack initiation. This is accomplished by comparing the evolution histories of void volume fraction near the notch tip in the static analysis with the dynamic analyses. The results indicate that increased strain hardening caused by strain rate sensitivity, which becomes important under dynamic loading, plays a benign role in considerably slowing down the void growth rate near the notch tip. This is partially opposed by thermal softening caused by adiabatic heating near the notch tip.
Resumo:
Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.
Resumo:
Tensile experiments at 673 K and grain sizes from similar to 8 to 17 mu m revealed large ductility at a low strain rate and a reduced ductility at a high strain rate, corresponding to a change from a high to a low value for the strain rate sensitivity. High strain rate deformation led to fracture by flow localization, whereas low strain rate deformation involved fracture by cavity nucleation and growth. Analysis revealed that grain boundary migration can assist significantly in reducing the stress concentrations caused by grain boundary sliding, thereby retarding cavity nucleation. Calculations demonstrate that the interlinkage of voids parallel and perpendicular to the tensile axis occurs significantly, so that it is not always possible to use the cavity shapes to distinguish between diffusion and plasticity controlled growth. Cavitation damage evolves slowly in materials with a coarser grain size because of reduced nucleation related to a reduction in the strain rate sensitivity and associated grain boundary sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Uniaxial compression tests were conducted on Ti-6Al-4V specimens in the strain-rate range df 0.001 to 1 s(-1) and temperature range of 298 to 673 K. The stress-strain curves exhibited a peak flow stress followed by flow softening. Up to 523 K, the specimens cracked catastrophically after the flow softening started. Adiabatic shear banding was observed in this regime. The fracture surface exhibited both mode I and II fracture features. The state of stress existing in a compression test specimen when bulging occurs is responsible for this fracture. The instabilities observed in the present tests are classified as ''geometric'' in nature and are state-of-stress dependant, unlike the ''intrinsic'' instabilities, which are dependant on the dynamic constitutive behavior of the material.
Resumo:
Two distinct ferromagnetic phases are present in LaMn0.5Co0.5O3 for which the spin-only magnetic moment calculated from the high temperature dc susceptibility is found to be unusually high. Such a high moment can only be accounted for by assigning the valence state of the cations to Mn2+-Co4+. This is unrealistic as the earlier report based on X-ray absorption spectroscopy (XAS) has suggested the valence state to be mainly Mn4+-Co2+ with traces of Co3+. Also from our studies using XAS, it is found that the valence state is mainly Mn4+-Co2+. In addition, no notable difference is observed in the minor Co3+ present in both phases. Our results based on X-ray magnetic circular dichroism studies (XMCD) reveal the presence of ``distinct'' high orbital moment associated with Co2+ for both phases. Thus it is found that the distinctness of the orbital moment also plays a vital role in determining the magnetic moment and T-c of both phases of LaMn0.5Co0.5O3. By considering the orbital moment obtained from XMCD, the anomaly in the paramagnetic susceptibility is resolved and thus we are able to assign the valence state to Mn4+-Co2+ configuration. The difference in the magnitude of orbital moment in both phases is believed to be due to the crystal field effects.
Resumo:
This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SW accounting for tension softening effect has been obtained as the difference of SIP obtained using linear elastic fracture mechanics (LEFM) principles and SIP due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SW due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In finite element analysis, the domain integral method has been used for computation of SIR The domain integral method is used to calculate the strain energy release rate and SIF when a crack grows. Numerical studies have been conducted on notched 3-point bending concrete specimen with and without considering the cohesive stresses. It is observed from the studies that SW obtained from the finite element analysis with and without considering the cohesive stresses is in good agreement with the corresponding analytical value. The effect of cohesive stress on SW decreases with increase of crack length. Further, studies have been conducted on geometrically similar structures and observed that (i) the effect of cohesive stress on SW is significant with increase of load for a particular crack length and (iii) SW values decreases with increase of tensile strength for a particular crack length and load.
Resumo:
The He I photoelectron spectrum of the diethyl ether-ICl complex has been obtained. The oxygen orbitals are shifted to higher binding energies and that of ICl to lower binding energies owing to complex formation. Ab initio molecular orbital (MO) calculations of the complex molecule showed that the bonding is between the sigma-type lone pair of oxygen and the I atom and that the complex has C-2v symmetry. The binding energy of the complex is computed to be 8.06 kcal mol(-1) at the MP2/3-21G* level. The orbital energies obtained from the photoelectron spectra of the complex are compared and assigned with orbital energies obtained by MO calculations. Natural bond orbital analysis (NBO) shows that charge transfer is from the sigma-type oxygen lone pair to the iodine atom and the magnitude of charge transfer is 0.0744 e.
Resumo:
EHT calculations on heterotrinuclear cobalt(III) complexes of the type [Cu{(OH)(2)Co(L(4))}(2)](4+) where L(4) denotes (en)(2) or (NH3)(4), en = ethylenediamine and their component species have been carried out. The results regarding bonding and structure for the trinuclear complexes are compared with those for the monomer components such as [Co(en)(2)(OH)(2)](+), [Co(NH3)(4)(OH)(2)](+) and [Cu(OH)(4)](2-) are discussed.
Resumo:
The paper reports the failure features observed in low mass repeatedly (pendulum) impacted glass epoxy composites with and without the mid section having either 2-layers or 3-layers of flexible foam. Features such as through width and inclined cracks as well as adhering of foam observed in the experiments are explained. The significance of the foam material in modifying the impact response of the composite is stressed.
Resumo:
To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.
Resumo:
It is well known that the increasing space activities pose a serious threat to future missions. This is mainly due to the presence of spent stages, rockets spacecraft and fragments which can lead to collisions. The calculation of the collision probability of future space vehicles with the orbital debris is necessary for estimating the risk. There is lack of adequately catalogued and openly available detailed information on the explosion characteristics of trackable and untrackable debris data. Such a situation compels one to develop suitable mathematical modelling of the explosion and the resultant debris environment. Based on a study of the available information regarding the fragmentation, subsequent evolution and observation, it turns out to be possible to develop such a mathematical model connecting the dynamical features of the fragmentation with the geometrical/orbital characteristics of the debris and representing the environment through the idea of equivalent breakup. (C) 1997 COSPAR.