963 resultados para Optimal switch allocation
Resumo:
This dissertation discussed resource allocation mechanisms in several network topologies including infrastructure wireless network, non-infrastructure wireless network and wire-cum-wireless network. Different networks may have different resource constrains. Based on actual technologies and implementation models, utility function, game theory and a modern control algorithm have been introduced to balance power, bandwidth and customers' satisfaction in the system. ^ In infrastructure wireless networks, utility function was used in the Third Generation (3G) cellular network and the network was trying to maximize the total utility. In this dissertation, revenue maximization was set as an objective. Compared with the previous work on utility maximization, it is more practical to implement revenue maximization by the cellular network operators. The pricing strategies were studied and the algorithms were given to find the optimal price combination of power and rate to maximize the profit without degrading the Quality of Service (QoS) performance. ^ In non-infrastructure wireless networks, power capacity is limited by the small size of the nodes. In such a network, nodes need to transmit traffic not only for themselves but also for their neighbors, so power management become the most important issue for the network overall performance. Our innovative routing algorithm based on utility function, sets up a flexible framework for different users with different concerns in the same network. This algorithm allows users to make trade offs between multiple resource parameters. Its flexibility makes it a suitable solution for the large scale non-infrastructure network. This dissertation also covers non-cooperation problems. Through combining game theory and utility function, equilibrium points could be found among rational users which can enhance the cooperation in the network. ^ Finally, a wire-cum-wireless network architecture was introduced. This network architecture can support multiple services over multiple networks with smart resource allocation methods. Although a SONET-to-WiMAX case was used for the analysis, the mathematic procedure and resource allocation scheme could be universal solutions for all infrastructure, non-infrastructure and combined networks. ^
Resumo:
Growth, morphology and biomass allocation in response to water depth was studied in white water lily,Nymphaea odorata Aiton. Plants were grown for 13 months in 30, 60 and 90 cm water in outdoor mesocosms in southern Florida. Water lily plant growth was distinctly seasonal with plants at all water levels producing more and larger leaves and more flowers in the warmer months. Plants in 30 cm water produced more but smaller and shorter-lived leaves than plants at 60 cm and 90 cm water levels. Although plants did not differ significantly in total biomass at harvest, plants in deeper water had significantly greater biomass allocated to leaves and roots, while plants in 30 cm water had significantly greater biomass allocated to rhizomes. Although lamina area and petiole length increased significantly with water level, lamina specific weight did not differ among water levels. Petiole specific weight increased significantly with increasing water level, implying a greater cost to tethering the larger laminae in deeper water. Lamina length and width scaled similarly at different water levels and modeled lamina area (LA) accurately (LAmodeled = 0.98LAmeasured + 3.96, R2 = 0.99). Lamina area was highly correlated with lamina weight (LW = 8.43LA − 66.78, R2 = 0.93), so simple linear measurements can predict water lily lamina area and lamina weight. These relationships were used to calculate monthly lamina surface area in the mesocosms. Plants in 30 cm water had lower total photosynthetic surface area than plants in 60 cm and 90 cm water levels throughout, and in the summer plants in 90 cm water showed a great increase in photosynthetic surface area as compared to plants in shallower water. These results support setting Everglades restoration water depth targets for sloughs at depths ≥45 cm and suggest that in the summer optimal growth for white water lilies occurs at depths ≥75 cm.
Resumo:
Recently, energy efficiency or green IT has become a hot issue for many IT infrastructures as they attempt to utilize energy-efficient strategies in their enterprise IT systems in order to minimize operational costs. Networking devices are shared resources connecting important IT infrastructures, especially in a data center network they are always operated 24/7 which consume a huge amount of energy, and it has been obviously shown that this energy consumption is largely independent of the traffic through the devices. As a result, power consumption in networking devices is becoming more and more a critical problem, which is of interest for both research community and general public. Multicast benefits group communications in saving link bandwidth and improving application throughput, both of which are important for green data center. In this paper, we study the deployment strategy of multicast switches in hybrid mode in energy-aware data center network: a case of famous fat-tree topology. The objective is to find the best location to deploy multicast switch not only to achieve optimal bandwidth utilization but also to minimize power consumption. We show that it is possible to easily achieve nearly 50% of energy consumption after applying our proposed algorithm.
Resumo:
In the deregulated Power markets it is necessary to have a appropriate Transmission Pricing methodology that also takes into account “Congestion and Reliability”, in order to ensure an economically viable, equitable, and congestion free power transfer capability, with high reliability and security. This thesis presents results of research conducted on the development of a Decision Making Framework (DMF) of concepts and data analytic and modelling methods for the Reliability benefits Reflective Optimal “cost evaluation for the calculation of Transmission Cost” for composite power systems, using probabilistic methods. The methodology within the DMF devised and reported in this thesis, utilises a full AC Newton-Raphson load flow and a Monte-Carlo approach to determine, Reliability Indices which are then used for the proposed Meta-Analytical Probabilistic Approach (MAPA) for the evaluation and calculation of the Reliability benefit Reflective Optimal Transmission Cost (ROTC), of a transmission system. This DMF includes methods for transmission line embedded cost allocation among transmission transactions, accounting for line capacity-use as well as congestion costing that can be used for pricing using application of Power Transfer Distribution Factor (PTDF) as well as Bialek’s method to determine a methodology which consists of a series of methods and procedures as explained in detail in the thesis for the proposed MAPA for ROTC. The MAPA utilises the Bus Data, Generator Data, Line Data, Reliability Data and Customer Damage Function (CDF) Data for the evaluation of Congestion, Transmission and Reliability costing studies using proposed application of PTDF and other established/proven methods which are then compared, analysed and selected according to the area/state requirements and then integrated to develop ROTC. Case studies involving standard 7-Bus, IEEE 30-Bus and 146-Bus Indian utility test systems are conducted and reported throughout in the relevant sections of the dissertation. There are close correlation between results obtained through proposed application of PTDF method with the Bialek’s and different MW-Mile methods. The novel contributions of this research work are: firstly the application of PTDF method developed for determination of Transmission and Congestion costing, which are further compared with other proved methods. The viability of developed method is explained in the methodology, discussion and conclusion chapters. Secondly the development of comprehensive DMF which helps the decision makers to analyse and decide the selection of a costing approaches according to their requirements. As in the DMF all the costing approaches have been integrated to achieve ROTC. Thirdly the composite methodology for calculating ROTC has been formed into suits of algorithms and MATLAB programs for each part of the DMF, which are further described in the methodology section. Finally the dissertation concludes with suggestions for Future work.
Resumo:
Deployment of low power basestations within cellular networks can potentially increase both capacity and coverage. However, such deployments require efficient resource allocation schemes for managing interference from the low power and macro basestations that are located within each other’s transmission range. In this dissertation, we propose novel and efficient dynamic resource allocation algorithms in the frequency, time and space domains. We show that the proposed algorithms perform better than the current state-of-art resource management algorithms. In the first part of the dissertation, we propose an interference management solution in the frequency domain. We introduce a distributed frequency allocation scheme that shares frequencies between macro and low power pico basestations, and guarantees a minimum average throughput to users. The scheme seeks to minimize the total number of frequencies needed to honor the minimum throughput requirements. We evaluate our scheme using detailed simulations and show that it performs on par with the centralized optimum allocation. Moreover, our proposed scheme outperforms a static frequency reuse scheme and the centralized optimal partitioning between the macro and picos. In the second part of the dissertation, we propose a time domain solution to the interference problem. We consider the problem of maximizing the alpha-fairness utility over heterogeneous wireless networks (HetNets) by jointly optimizing user association, wherein each user is associated to any one transmission point (TP) in the network, and activation fractions of all TPs. Activation fraction of a TP is the fraction of the frame duration for which it is active, and together these fractions influence the interference seen in the network. To address this joint optimization problem which we show is NP-hard, we propose an alternating optimization based approach wherein the activation fractions and the user association are optimized in an alternating manner. The subproblem of determining the optimal activation fractions is solved using a provably convergent auxiliary function method. On the other hand, the subproblem of determining the user association is solved via a simple combinatorial algorithm. Meaningful performance guarantees are derived in either case. Simulation results over a practical HetNet topology reveal the superior performance of the proposed algorithms and underscore the significant benefits of the joint optimization. In the final part of the dissertation, we propose a space domain solution to the interference problem. We consider the problem of maximizing system utility by optimizing over the set of user and TP pairs in each subframe, where each user can be served by multiple TPs. To address this optimization problem which is NP-hard, we propose a solution scheme based on difference of submodular function optimization approach. We evaluate our scheme using detailed simulations and show that it performs on par with a much more computationally demanding difference of convex function optimization scheme. Moreover, the proposed scheme performs within a reasonable percentage of the optimal solution. We further demonstrate the advantage of the proposed scheme by studying its performance with variation in different network topology parameters.