997 resultados para Optical magnetic twisting cytometry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, there has been considerable interest in using saturated magnetic objective lenses in high resolution electron microscopes. Such lenses, in present commercial electron microscopes, are energized either by conventional or superconducting coils. Very little work, however, has been reported on the use of conventional coils in saturated magnetic electron lenses. The present investigation has been concerned with the design of high flux density saturated objective lenses of both single and double polepiece types which may be energized by conventional coils and in some cases by superconducting coils. Such coils have the advantage of being small and capable of carrying high current densities. The present work has been carried out with the aid of several computer programs based on the finite element method. The effect of the shape and position of the energizing coil on the electron optical parameter has been investigated. Electron optical properties such as chromatic and spherical aberration have been studies in detail for saturated single and double polepiece lenses. Several high flux density coils of different shapes have been investigated. The choice of the most favourable coil shape and position subject to the operational requirements, has been studied in some detail. The focal properties of such optimised lenses have been computed and compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation looks critically at conventional magnetic lenses in the light of present-day technology with the aim of advancing electron microscopy in its broadest sense. By optimising the cooling arrangements and heat transfer characteristics of lens windings it was possible to increase substantially the current density in the winding, and achieve a large reduction in the size of conventional magnetic electron lenses. Following investigations into the properties of solenoidal lenses, a new type of lens with only one pole-piece was developed. The focal properties of such lenses, which differ considerably from those.of conventional lenses, have been derived from a combination of mathematical models and experimentally measured axial flux density distributions. These properties can be profitably discussed with reference to "half-lenses". Miniature conventional twin pole-piece lenses and the proposed radial field single pole-piece lenses have been designed and constructed and both types of lenses have been evaluated by constructing miniature electron optical columns. A miniature experimental transmission electron microscope (TEM), a miniature scanning electron microscope (SEM) and a scanning transmission microscope (STEM) have been built. A single pole-piece miniature one million volt projector lens of only lOcm diameter and weighing 2.lkg was designed, built and tested at 1 million volts in a commercial electron microscope. iii. Preliminary experiments indicate that in single pole lenses it is possible to extract secondary electrons from the specimen in spite of the presence of the magnetic field of the probe-forming lens. This may well be relevant for the SEM in which it is desirable to examine a large specimen at a moderately good resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and magnetic properties of epitaxial magnetite Fe3O4 on GaAs(100) have been studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. The epitaxial Fe3O4 films were synthesized by in situ post growth annealing of ultrathin epitaxial Fe films at 500K in an oxygen partial pressure of 5×10−5mbar. The XMCD measurements show characteristic contributions from different sites of the ferrimagnetic magnetite unit cell, namely, Fetd3+, Feoh2+, and Feoh3+. The epitaxial relationship was found to be Fe3O4(100)⟨011⟩∕∕GaAs(100)⟨010⟩ with the unit cell of Fe3O4 rotated by 45° to match that of GaAs(100) substrate. The films show a uniaxial magnetic anisotropy in a thickness range of about 2.0–6.0nm with the easy axes along the [011] direction of the GaAs(100) substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber optic sensors are fabricated for detecting static magnetic fields. The sensors consist of a UV inscribed long period grating with two 50 micron long microslots. The microslots are fabricated using the femtosecond laser based inscribe and etch technique. The microslots and the fiber surface are coated with a magnetostrictive material Terfenol-D. A spectral sensitivity of 1.15 pm/mT was measured in transmission with a working resolution of ±0.2 mT for a static magnetic field strength below 10 mT. These devices also present a different response when the spatial orientation of the fiber was adjusted relative to the magnetic field lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer comprises a collection of diseases, all of which begin with abnormal tissue growth from various stimuli, including (but not limited to): heredity, genetic mutation, exposure to harmful substances, radiation as well as poor dieting and lack of exercise. The early detection of cancer is vital to providing life-saving, therapeutic intervention. However, current methods for detection (e.g., tissue biopsy, endoscopy and medical imaging) often suffer from low patient compliance and an elevated risk of complications in elderly patients. As such, many are looking to “liquid biopsies” for clues into presence and status of cancer due to its minimal invasiveness and ability to provide rich information about the native tumor. In such liquid biopsies, peripheral blood is drawn from patients and is screened for key biomarkers, chiefly circulating tumor cells (CTCs). Capturing, enumerating and analyzing the genetic and metabolomic characteristics of these CTCs may hold the key for guiding doctors to better understand the source of cancer at an earlier stage for more efficacious disease management.

The isolation of CTCs from whole blood, however, remains a significant challenge due to their (i) low abundance, (ii) lack of a universal surface marker and (iii) epithelial-mesenchymal transition that down-regulates common surface markers (e.g., EpCAM), reducing their likelihood of detection via positive selection assays. These factors potentiate the need for an improved cell isolation strategy that can collect CTCs via both positive and negative selection modalities as to avoid the reliance on a single marker, or set of markers, for more accurate enumeration and diagnosis.

The technologies proposed herein offer a unique set of strategies to focus, sort and template cells in three independent microfluidic modules. The first module exploits ultrasonic standing waves and a class of elastomeric particles for the rapid and discriminate sequestration of cells. This type of cell handling holds promise not only in sorting, but also in the isolation of soluble markers from biofluids. The second module contains components to focus (i.e., arrange) cells via forces from acoustic standing waves and separate cells in a high throughput fashion via free-flow magnetophoresis. The third module uses a printed array of micromagnets to capture magnetically labeled cells into well-defined compartments, enabling on-chip staining and single cell analysis. These technologies can operate in standalone formats, or can be adapted to operate with established analytical technologies, such as flow cytometry. A key advantage of these innovations is their ability to process erythrocyte-lysed blood in a rapid (and thus high throughput) fashion. They can process fluids at a variety of concentrations and flow rates, target cells with various immunophenotypes and sort cells via positive (and potentially negative) selection. These technologies are chip-based, fabricated using standard clean room equipment, towards a disposable clinical tool. With further optimization in design and performance, these technologies might aid in the early detection, and potentially treatment, of cancer and various other physical ailments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the origin of large-scale structures in hot star winds, believed to be responsible for the presence of discrete absorption components (DACs) in the absorption troughs of ultraviolet resonance lines, is constrained using both observations and numerical simulations. These structures are understood as arising from bright regions on the stellar surface, although their physical cause remains unknown. First, we use high quality circular spectropolarimetric observations of 13 well-studied OB stars to evaluate the potential role of dipolar magnetic fields in producing DACs. We perform longitudinal field measurements and place limits on the field strength using Bayesian inference, assuming that it is dipolar. No magnetic field was detected within this sample. The derived constraints statistically refute any significant dynamical influence from a magnetic dipole on the wind for all of these stars, ruling out such fields as a cause for DACs. Second, we perform numerical simulations using bright spots constrained by broadband optical photometric observations. We calculate hydrodynamical wind models using three sets of spot sizes and strengths. Co-rotating interaction regions are yielded in each model, and radiative transfer shows that the properties of the variations in the UV resonance lines synthesized from these models are consistent with those found in observed UV spectra, establishing the first consistent link between UV spectroscopic line profile variability and photometric variations and thus supporting the bright spot paradigm (BSP). Finally, we develop and apply a phenomenological model to quantify the measurable effects co-rotating bright spots would have on broadband optical photometry and on the profiles of photopheric lines in optical spectra. This model can be used to evaluate the existence of these spots, and, in the event of their detection, characterize them. Furthermore, a tentative spot evolution model is presented. A preliminary analysis of its output, compared to the observed photometric variations of xi Persei, suggests the possible existence of “active longitudes” on the surface of this star. Future work will expand the range of observational diagnostics that can be interpreted within the BSP, and link phenomenology (bright spots) to physical processes (magnetic spots or non-radial pulsations).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis aims to exploit properties of thin films for applications such as spintronics, UV detection and gas sensing. Nanoscale thin films devices have myriad advantages and compatibility with Si-based integrated circuits processes. Two distinct classes of material systems are investigated, namely ferromagnetic thin films and semiconductor oxides. To aid the designing of devices, the surface properties of the thin films were investigated by using electron and photon characterization techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), and energy-dispersive X-ray spectroscopy (EDS). These are complemented by nanometer resolved local proximal probes such as atomic force microscopy (AFM), magnetic force microscopy (MFM), electric force microscopy (EFM), and scanning tunneling microscopy to elucidate the interplay between stoichiometry, morphology, chemical states, crystallization, magnetism, optical transparency, and electronic properties. Specifically, I studied the effect of annealing on the surface stoichiometry of the CoFeB/Cu system by in-situ AES and discovered that magnetic nanoparticles with controllable areal density can be produced. This is a good alternative for producing nanoparticles using a maskless process. Additionally, I studied the behavior of magnetic domain walls of the low coercivity alloy CoFeB patterned nanowires. MFM measurement with the in-plane magnetic field showed that, compared to their permalloy counterparts, CoFeB nanowires require a much smaller magnetization switching field , making them promising for low-power-consumption domain wall motion based devices. With oxides, I studied CuO nanoparticles on SnO2 based UV photodetectors (PDs), and discovered that they promote the responsivity by facilitating charge transfer with the formed nanoheterojunctions. I also demonstrated UV PDs with spectrally tunable photoresponse with the bandgap engineered ZnMgO. The bandgap of the alloyed ZnMgO thin films was tailored by varying the Mg contents and AES was demonstrated as a surface scientific approach to assess the alloying of ZnMgO. With gas sensors, I discovered the rf-sputtered anatase-TiO2 thin films for a selective and sensitive NO2 detection at room temperature, under UV illumination. The implementation of UV enhances the responsivity, response and recovery rate of the TiO2 sensor towards NO2 significantly. Evident from the high resolution XPS and AFM studies, the surface contamination and morphology of the thin films degrade the gas sensing response. I also demonstrated that surface additive metal nanoparticles on thin films can improve the response and the selectivity of oxide based sensors. I employed nanometer-scale scanning probe microscopy to study a novel gas senor scheme consisting of gallium nitride (GaN) nanowires with functionalizing oxides layer. The results suggested that AFM together with EFM is capable of discriminating low-conductive materials at the nanoscale, providing a nondestructive method to quantitatively relate sensing response to the surface morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to test the feasibility and reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) evaluations of the fetal brains in cases of twin-twin transfusion syndrome (TTTS). From May 2011 to June 2012, 24 patients with severe TTTS underwent MRI scans for evaluation of the fetal brains. Datasets were analyzed offline on axial DW images and apparent diffusion coefficient (ADC) maps by two radiologists. The subjective evaluation was described as the absence or presence of water diffusion restriction. The objective evaluation was performed by the placement of 20-mm(2) circular regions of interest on the DW image and ADC maps. Subjective interobserver agreement was assessed by the kappa correlation coefficient. Objective intraobserver and interobserver agreements were assessed by proportionate Bland-Altman tests. Seventy-four DW-MRI scans were performed. Sixty of them (81.1%) were considered to be of good quality. Agreement between the radiologists was 100% for the absence or presence of diffusion restriction of water. For both intraobserver and interobserver agreement of ADC measurements, proportionate Bland-Altman tests showed average percentage differences of less than 1.5% and 95% CI of less than 18% for all sites evaluated. Our data demonstrate that DW-MRI evaluation of the fetal brain in TTTS is feasible and reproducible.