997 resultados para Optical frequency
Resumo:
We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.
Resumo:
In recent years, spacial agencies have shown a growing interest in optical wireless as an alternative to wired and radio-frequency communications. The use of these techniques for intra-spacecraft communications reduces the effect of take-off acceleration and vibrations on the systems by avoiding the need for rugged connectors and provides a significant mass reduction. Diffuse transmission also eases the design process as terminals can be placed almost anywhere without a tight planification to ensure the proper system behaviour. Previous studies have compared the performance of radio-frequency and infrared optical communications. In an intra-satellite environment optical techniques help reduce EMI related problems, and their main disadvantages - multipath dispersion and the need for line-of-sight - can be neglected due to the reduced cavity size. Channel studies demonstrate that the effect of the channel can be neglected in small environments if data bandwidth is lower than some hundreds of MHz.
Resumo:
A method of opto-optical modulation in liquid crystals is reported. An Ar+-laser beam is employed to modulate a second He–Ne laser. The highest frequency achieved was 1.5 × 103 pulses per second with input modulating powers smaller than 10 mW. A homeotropic N-(p-methoxybenzylidene)-p-butylaniline liquid-crystal cell was employed as the nonlinear medium.
Resumo:
In this work we present a new way to mask the data in a one-user communication system when direct sequence - code division multiple access (DS-CDMA) techniques are used. The code is generated by a digital chaotic generator, originally proposed by us and previously reported for a chaos cryptographic system. It is demonstrated that if the user's data signal is encoded with a bipolar phase-shift keying (BPSK) technique, usual in DS-CDMA, it can be easily recovered from a time-frequency domain representation. To avoid this situation, a new system is presented in which a previous dispersive stage is applied to the data signal. A time-frequency domain analysis is performed, and the devices required at the transmitter and receiver end, both user-independent, are presented for the optical domain.
Resumo:
The type of signals obtained has conditioned chaos analysis tools. Almost in every case, they have analogue characteristics. But in certain cases, a chaotic digital signal is obtained and theses signals need a different approach than conventional analogue ones. The main objective of this paper will be to present some possible approaches to the study of this signals and how information about their characteristics may be obtained in the more straightforward possible way. We have obtained digital chaotic signals from an Optical Logic Cell with some feedback between output and one of the possible control gates. This chaos has been reported in several papers and its characteristics have been employed as a possible method to secure communications and as a way to encryption. In both cases, the influence of some perturbation in the transmission medium gave problems both for the synchronization of chaotic generators at emitter and receiver and for the recovering of information data. A proposed way to analyze the presence of some perturbation is to study the noise contents of transmitted signal and to implement a way to eliminate it. In our present case, the digital signal will be converted to a multilevel one by grouping bits in packets of 8 bits and applying conventional methods of time-frequency analysis to them. The results give information about the change in signals characteristics and hence some information about the noise or perturbations present. Equivalent representations to the phase and to the Feigenbaum diagrams for digital signals are employed in this case.
Resumo:
This paper reports on a case study of the impact of fabrication steps on InN material properties. We discuss the influence of annealing time and sequence of device processing steps. Photoluminescence (PL), surface morphology and electrical transport (electrical resistivity and low frequency noise) properties have been studied as responses to the adopted fabrication steps. Surface morphology has a strong correlation with annealing times, while sequences of fabrication steps do not appear to be influential. In contrast, the optical and electrical properties demonstrate correlation with both etching and thermal annealing. For all the studied samples PL peaks were in the vicinity of 0.7 eV, but the intensity and full width at half maximum (FWHM) demonstrate a dependence on the technological steps followed. Sheet resistance and electrical resistivity seem to be lower in the case of high defect introduction due to both etching and thermal treatments. The same effect is revealed through 1/f noise level measurements. A reduction of electrical resistivity is connected to an increase in 1/f noise level.
Resumo:
Optical filters are crucial elements in optical communications. The influence of cascaded filters in the optical signal will affect the communications quality seriously. In this paper we will study and simulate the optical signal impairment caused by different kinds of filters which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (FP). Optical signal impairment is analyzed from an Eye Opening Penalty (EOP) and optical spectrum point of view. The simulation results show that when the center frequency of all filters aligns with the laser’s frequency, the Butterworth has the smallest influence to the signal while the F-P has the biggest. With a -1dB EOP, the amount of cascaded Butterworth optical filters with a bandwidth of 50 GHz is 18 in 40 Gbps NRZ-DQPSK systems and 12 in 100 Gbps PMNRZ- DQPSK systems. The value is reduced to 9 and 6 respectively for Febry-Perot optical filters. In the situation of frequency misalignment, the impairment caused by filters is more serious. Our research shows that with a frequency deviation of 5 GHz, only 12 and 9 Butterworth optical filters can be cascaded in 40 Gbps NRZ-DQPSK and 100 Gbps PM-NRZ-DQPSK systems respectively. We also study the signal impairment caused by different orders of the Butterworth filter model. Our study shows that although the higher-order has a smaller clipping effect in the transmission spectrum, it will introduce a more serious phase ripple which seriously affects the signal. Simulation result shows that the 2nd order Butterworth filter has the best performance.
Resumo:
Optical filters are crucial elements in optical communication networks. Their influence toward the optical signal will affect the communication quality seriously. In this paper we will study and simulate the optical signal impairment and crosstalk penalty caused by different kinds of filters, which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (F-P). Signal impairment from filter concatenation effect and crosstalk penalty from out-band and in-band are analyzed from Q-penalty, eye opening penalty (EOP) and optical spectrum. The simulation results show that signal impairment and crosstalk penalty induced by the Butterworth filter is the minimum among these four types of filters. Signal impairment caused by filter concatenation effect shows that when center frequency of all filters is aligned perfectly with the laser's frequency, 12 50-GHz Butterworth filters can be cascaded, with 1-dB EOP. This value is reduced to 9 when the center frequency is misaligned with 5 GHz. In the 50-GHz channel spacing DWDM networks, total Q-penalty induced by a pair of Butterworth filters based demultiplexer and multiplexer is lower than 0.5 dB when the filter bandwidth is in the range of 42-46 GHz.
Resumo:
As a step toward understanding their functional role, the low frequency vibrational motions (<300 cm−1) that are coupled to optical excitation of the primary donor bacteriochlorophyll cofactors in the reaction center from Rhodobacter sphaeroides were investigated. The pattern of hydrogen-bonding interaction between these bacteriochlorophylls and the surrounding protein was altered in several ways by mutation of single amino acids. The spectrum of low frequency vibrational modes identified by femtosecond coherence spectroscopy varied strongly between the different reaction center complexes, including between different mutants where the pattern of hydrogen bonds was the same. It is argued that these variations are primarily due to changes in the nature of the individual modes, rather than to changes in the charge distribution in the electronic states involved in the optical excitation. Pronounced effects of point mutations on the low frequency vibrational modes active in a protein-cofactor system have not been reported previously. The changes in frequency observed indicate a strong involvement of the protein in these nuclear motions and demonstrate that the protein matrix can increase or decrease the fluctuations of the cofactor along specific directions.
Resumo:
Near infrared diffuse optical spectroscopy and diffuse optical imaging are promising methods that eventually may enhance or replace existing technologies for breast cancer screening and diagnosis. These techniques are based on highly sensitive, quantitative measurements of optical and functional contrast between healthy and diseased tissue. In this study, we examine whether changes in breast physiology caused by exogenous hormones, aging, and fluctuations during the menstrual cycle result in significant alterations in breast tissue optical contrast. A noninvasive quantitative diffuse optical spectroscopy technique, frequency-domain photon migration, was used. Measurements were performed on 14 volunteer subjects by using a hand-held probe. Intrinsic tissue absorption and reduced scattering parameters were calculated from frequency-domain photon migration data. Wavelength-dependent absorption (at 674, 803, 849, and 956 nm) was used to determine tissue concentration of oxyhemoglobin, deoxyhemoglobin, total hemoglobin, tissue hemoglobin oxygen saturation, and bulk water content. Results show significant and dramatic differences in optical properties between menopausal states. Average premenopausal intrinsic tissue absorption and reduced scattering values at each wavelength are 2.5- to 3-fold higher and 16–28% greater, respectively, than absorption and scattering for postmenopausal subjects. Absorption and scattering properties for women using hormone replacement therapy are intermediate between premenopausal and postmenopausal populations. Physiological properties show differences in mean total hemoglobin (7.0 μM, 11.8 μM, and 19.2 μM) and water concentration relative to pure water (10.9%, 15.3%, and 27.3%) for postmenopausal, hormone replacement therapy, and premenopausal subjects, respectively. Because of their unique, quantitative information content, diffuse optical methods may play an important role in breast diagnostics and improving our understanding of breast disease.
Resumo:
As a second-order nonlinear optical process, sum-frequency generation is highly surface-specific and accordingly has been developed into a very powerful and versatile surface spectroscopic tool. It has found many unique applications in different disciplines and thus provided many exciting new research opportunities in surface and surface-related science. Selected examples are discussed here to illustrate the power of the technique.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
In this paper, we demonstrate the use of a video camera for measuring the frequency of small-amplitude vibration movements. The method is based on image acquisition and multilevel thresholding and it only requires a video camera with high enough acquisition rate, not being necessary the use of targets or auxiliary laser beams. Our proposal is accurate and robust. We demonstrate the technique with a pocket camera recording low-resolution videos with AVI-JPEG compression and measuring different objects that vibrate in parallel or perpendicular direction to the optical sensor. Despite the low resolution and the noise, we are able to measure the main vibration modes of a tuning fork, a loudspeaker and a bridge. Results are successfully compared with design parameters and measurements with alternative devices.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
The present data publication provides permanent links to original and updated versions of validated data files. The data files include properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.