746 resultados para Online teaching activities


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Universitat Oberta de Catalunya (UOC) is an online university that has innovation as a transversal feature in all its activities and processes. Therefore, innovation is present in the annual objectives of all the academic and management departments in order to increase student satisfaction. UOC stimulates innovation by funding strategic projects as well as organizing regular internal calls for small projects which brings about innovative academic and management proposals. In this paper we present the method for evaluating teaching and management innovations through internal calls (APLICA), by selecting which initiatives are suitable to become strategic innovative projects (INNOVA) or which features should compose any application available at the OpenApps platform. Besides, general indicators used by the Innovation Program to evaluate the activities carried out are also reported.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In recent years there have been several proposals for alternative pedagogical practices. Most of these proposals are based in the, so called, “active learning”, in opposition to the common “passive learning”, which is centered on transmission of information inside classrooms as well as recognized as teacher-centered procedure. In an active learning pedagogical structure, students have a more participative role in the overall learning/teaching process, being encouraged to face new learning challenges like, for instance, solving problems and developing projects, in an autonomous approach trying to make them, consequently, able to build their own knowledge. The flipped or “inverted” classroom is one of these active learning pedagogical methodologies that emphasizes a learner-centered instruction. According to this approach, the first contact that students have with the content on a particular curriculum subject is not transmitted by the lecturer in the classroom, this teaching strategy requires students to assess and analyze the specific subject before attending to class, therefore the informational component from the lecture is the homework, and class time is dedicated to exercises and assignments, always with support from the instructor, who acts as a facilitator, helping students when needed and offering supplementary explanation as required. The main objective of this paper is to discuss and explore how the use of different types of instructional videos and online activities may be implemented in the flipped classroom procedure (as means of incorporating new content and teaching new competencies) and to describe students’ perceptions of this approach within a course in a Higher Education Institution (HEI), presenting some positive and negative features of this pedagogical practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information technology (IT) sees information as a fluid, to be stored, regulated and exchanged. This is a profoundly economic model, whose dreams are those of the marketplace – and now, university managers. But no teacher, of course, holds that teaching can be reduced to the movement of information from one point to another. Teaching is never quite absorbed into the models of IT. Where they meet, we do not have the utopia of the virtual classroom, at last freed from the strictures of timetables and the face-to-face; we have, rather, the grinding of two radically irreducible models. This has nothing to do with Luddism; on the contrary, it is the value and necessity of IT for us at present, as teachers. At a time when the tertiary sector’s massive investment in IT is motivated in part by its own dream of the teacherless classroom, one of the pressing tasks for us may be simply to argue as rigorously as we can the structural necessity of our own position as teachers, without nostalgia or humanist sentimentality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM: The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. METHODS: This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. RESULTS: The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. CONCLUSIONS: Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rapport de synthèse : L'article qui fait l'objet de ma thèse évalue une nouvelle approche pédagogique pour l'apprentissage de certains chapitres de physiopathologie. Le dispositif pédagogique se base sur l'alternance d'apprentissage ex-cathedra et de l'utilisation d'un site web comprenant des vignettes cliniques. Lors de la consultation de ces-dernières, l'étudiant est invité à demander des examens de laboratoire dont il pourrait justifier la pertinence selon le cas clinique étudié. La nouveauté du procédé réside dans le fait que, préalablement à son cours ex-cathedra, l'enseignant peut consulter les statistiques de demandes de laboratoire et ainsi orienter son cours selon les éléments mal compris par les étudiants. A la suite du cours ex-cathedra, les étudiants peuvent consulter sur internet la vignette clinique complète avec des explications. A l'issue de tout le cours, une évaluation auprès des étudiants a été conduite. Le procédé a été mis en place durant deux années consécutives et l'article en discute notamment les résultats. Nous avons pu conclure que cette méthode innovatrice d'enseignement amène les étudiants à mieux se préparer pour les cours ex-cathedra tout en permettant à l'enseignant d'identifier plus précisément quelles thématiques étaient difficiles pour les étudiants et donc d'ajuster au mieux son cours. Mon travail de thèse a consisté à créer ce dispositif d'apprentissage, à créer l'application web des vignettes cliniques et à l'implanter durant deux années consécutives. J'ai ensuite analysé les données des évaluations et écrit l'article que j'ai présenté à la revue 'Medical Teacher'. Après quelques corrections et précisions demandées par le comité de lecture, l'article a été accepté et publié. Ce travail a débouché sur une seconde version de l'application web qui est actuellement utilisée lors du module 3.1 de 3è année à l'Ecole de Médecine à Lausanne. Summary : Since the early days of sexual selection, our understanding of the selective forces acting on males and females during reproduction has increased remarkably. However, despite a long tradition of experimental and theoretical work in this field and relentless effort, numerous questions remain unanswered and many results are conflicting. Moreover, the interface between sexual selection and conservation biology has to date received little attention, despite existing evidence for its importance. In the present thesis, I first used an empirical approach to test various sexual selection hypotheses in a population of whitefish of central Switzerland. This precise population is characterized by a high prevalence of gonadal alterations in males. In particular, I challenged the hypothesis that whitefish males displaying peculiar gonadal features are of lower genetic quality than other seemingly normal males. Additionally, I also worked on identifying important determinant of sperm behavior. During a second theoretical part of my work, which is part of a larger project on the evolution of female mate preferences in harvested fish populations, I developed an individual-based simulation model to estimate how different mate discrimination costs affect the demographical behavior of fish populations and the evolutionary trajectories of female mate preferences. This latter work provided me with some insight on a recently published article addressing the importance of sexual selection for harvesting-induced evolution. I built upon this insight in a short perspective paper. In parallel, I let some methodological questions drive my thoughts, and wrote an essay about possible synergies between the biological, the philosophical and the statistical approach to biological questions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El auténtico protagonismo de los centros educativostiene que dirigirse a ayudar a pensar a sus alumnos y aenseñarlos a aprender, es decir, el docente tiene queenseñar estrategias de aprendizaje y debe promover elesfuerzo del estudiante para facilitar la construcción deesquemas y el aprendizaje permanente.El profesor debe utilizar cualquier situación deaprendizaje para enseñar dichas estrategias deaprendizaje, incluso en las situaciones de evaluación;por lo tanto, en este trabajo se sugiere que en lasevaluaciones de los alumnos y alumnas se tenga encuenta la metacognición como factor fundamental en elaprendizaje y la enseñanza

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in written communications brought about by technology have led to a revolution in the concepts of literacy and, as a result, in students’ educational needs. However, teenagers appear to use technologies that involve new channels and text genres in the digital environment much more than in their everyday life than in an academic environment, because there is still too much distance between what schools offer students and their own reality. This article shows part of the findings of ethnographic and qualitative research in the line of new studies on teenagers’ critical literacy and vernacular writing practices in the asynchronous communication spaces online. The idea is to offer data and ideas to help overcome the current inertia and distance between some educational activities and young people’s communicative needs

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rate of adoption and use of learning management systems to support teaching and learning processes in academic institutions is growing rapidly. Universities are acquiring systems with functionalities that can match with their specific needs and requirements. Moodle is one of the most popular and widely deployed learning management systems in academic institutions today. However, apart from the system, universities tend to maintain other applications for the purpose of supplementing their teaching and learning processes. This situation is similar to Lappeenranta University of Technology (LUT), which is our case study in this project. Apart from Moodle, the university also maintains other systems such as Oodi, Noppa and Uni portal for the purpose of supporting its educational activities. This thesis has two main goals. The first goal is to understand the specific role of Moodle at LUT. This information is fundamental in assessing whether Moodle is needed in the university’s current teaching and learning environment. The second aim is to provide insights to teachers and other departmental stakeholders on how Moodle can provide added value in the teaching of a software development course. In response to this, a Moodle module for a software development course is created and the underlying features are tested. Results of the constructive work proposed some improvements through (i) the use of Moodle for in-class surveys, (ii) transfer of grades from Moodle to Oodi, (iii) use of Moodle in self-study courses and MOOCs, (iv) online examinations, and (v) Moodle integrations with third party applications. The proposed items were then evaluated for their utility through interviews of five expert interviews. The final results of this work are considered useful to LUT administration and management specifically on ways that Moodle can bring changes to the university at managerial, economical and technical level. It also poses some challenges on platform innovations and research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As universities are offering tuition through online learning environments, “onsite students” in higher education are increasingly becoming “online learners”. Since the medium for learning (and teaching) online is a digital environment, and at a distance, the role taken by students and teaching staff is different to the one these are used to in onsite, traditional settings. Therefore the Role of the Online Learner, presented in this paper, is key to onsite students who are to become online learners. This role consists of five competences: Operational, Cognitive, Collaborative, Self-directing, Course-specific. These five competences integrate the various skills, strategies, attitudes and awareness that make up the role of online learner, which learners use to perform efficiently online. They also make up the basis of a tutorial for would-be online learners, going over the Role of the Online Learner by means of concepts, examples and reflective activities. This tutorial, available to students in the author’s website, is also helpful to teaching and counselling staff in guiding their students to become online learners

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El auténtico protagonismo de los centros educativos tiene que dirigirse a ayudar a pensar a sus alumnos y a enseñarlos a aprender, es decir, el docente tiene que enseñar estrategias de aprendizaje y debe promover el esfuerzo del estudiante para facilitar la construcción de esquemas y el aprendizaje permanente. El profesor debe utilizar cualquier situación de aprendizaje para enseñar dichas estrategias de aprendizaje, incluso en las situaciones de evaluación; por lo tanto, en este trabajo se sugiere que en las evaluaciones de los alumnos y alumnas se tenga en cuenta la metacognición como factor fundamental en el aprendizaje y la enseñanza