840 resultados para Omnidirectional vision
Resumo:
Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. Visual servoing is a means of integrating noncontact visual sensing with machine control to augment or replace operator based control. This article describes two of our current mining automation projects in order to demonstrate some, perhaps unusual, applications of visual servoing, and also to illustrate some very real problems with robust computer vision
Resumo:
The International Journal of Robotics Research (IJRR) has a long history of publishing the state-of-the-art in the field of robotic vision. This is the fourth special issue devoted to the topic. Previous special issues were published in 2012 (Volume 31, No. 4), 2010 (Volume 29, Nos 2–3) and 2007 (Volume 26, No. 7, jointly with the International Journal of Computer Vision). In a closely related field was the special issue on Visual Servoing published in IJRR, 2003 (Volume 22, Nos 10–11). These issues nicely summarize the highlights and progress of the past 12 years of research devoted to the use of visual perception for robotics.
Resumo:
Over the past several decades there has been a sharp increase in the number of studies focused on the relationship between vision and driving. The intensified attention to this topic has most likely been stimulated by the lack of an evidence basis for determining vision standards for driving licensure and a poor understanding about how vision impairment impacts driver safety and performance. Clinicians depend on the literature on vision and driving to advise visually impaired patients appropriately about driving fitness. Policy makers also depend on the scientific literature in order to develop guidelines that are evidence-based and are thus fair to persons who are visually impaired. Thus it is important for clinicians and policy makers alike to understand how various study designs and measurement methods should be interpreted so that the conclusions and recommendations they make are not overly broad, too narrowly constrained, or even misguided. We offer a methodological framework to guide interpretations of studies on vision and driving that can also serve as a heuristic for researchers in the area. Here, we discuss research designs and general measurement methods for the study of vision as they relate to driver safety, driver performance, and driver-centered (self-reported) outcomes.
Resumo:
Falls are the leading cause of injury-related morbidity and mortality among older adults. In addition to the resulting physical injury and potential disability after a fall, there are also important psychological consequences, including depression, anxiety, activity restriction, and fear of falling. Fear of falling affects 20 to 43% of community-dwelling older adults and is not limited to those who have previously experienced a fall. About half of older adults who experience fear of falling subsequently restrict their physical and everyday activities, which can lead to functional decline, depression, increased falls risk, and reduced quality of life. Although there is clear evidence that older adults with visual impairment have higher falls risk, only a limited number of studies have investigated fear of falling in older adults with visual impairment and the findings have been mixed. Recent studies suggest increased levels of fear of falling among older adults with various eye conditions, including glaucoma and age-related macular degeneration, whereas other studies have failed to find differences. Interventions, which are still in their infancy in the general population, are also largely unexplored in those with visual impairment. The major aims of this review were to provide an overview of the literature on fear of falling, its measurement, and risk factors among older populations, with specific focus on older adults with visual impairment, and to identify directions for future research in this area.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.
Resumo:
This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.
Resumo:
There is limited research on the driving performance and safety of bioptic drivers and even less regarding the driving skills that are most challenging for those learning to drive with bioptic telescopes. This research consisted of case studies of five trainee bioptic drivers whose driving skills were compared with those of a group of licensed bioptic drivers (n = 23) while they drove along city, suburban, and controlled-access highways in an instrumented dual-brake vehicle. A certified driver rehabilitation specialist was positioned in the front passenger seat to monitor safety and two backseat evaluators independently rated driving using a standardized scoring system. Other aspects of performance were assessed through vehicle instrumentation and video recordings. Results demonstrate that while sign recognition, lane keeping, steering steadiness, gap judgments and speed choices were significantly worse in trainees, some driving behaviors and skills, including pedestrian detection and traffic light recognition were not significantly different to those of the licensed drivers. These data provide useful insights into the skill challenges encountered by a small sample of trainee bioptic drivers which, while not generalizable because of the small sample size, provide valuable insights beyond that of previous studies and can be used as a basis to guide training strategies.
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.
Resumo:
This paper proposes new metrics and a performance-assessment framework for vision-based weed and fruit detection and classification algorithms. In order to compare algorithms, and make a decision on which one to use fora particular application, it is necessary to take into account that the performance obtained in a series of tests is subject to uncertainty. Such characterisation of uncertainty seems not to be captured by the performance metrics currently reported in the literature. Therefore, we pose the problem as a general problem of scientific inference, which arises out of incomplete information, and propose as a metric of performance the(posterior) predictive probabilities that the algorithms will provide a correct outcome for target and background detection. We detail the framework through which these predicted probabilities can be obtained, which is Bayesian in nature. As an illustration example, we apply the framework to the assessment of performance of four algorithms that could potentially be used in the detection of capsicums (peppers).
Resumo:
This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.
Resumo:
Recent interest in affect and the body have mobilized a contemporary review of aesthetics and phenomenology within architecture to unpack how environments affect spatial experience. Emerging spatial studies within the neuro-sciences, and their implications for architectural research as raised by architectural theorists Juhani Pallasmaa (2014) and Harry Mallgrave (2013) has been well supported by a raft of scientists and institutions including the prestigious Salk Institute. Although there has been some headway in spatial studies of the vision impaired (Cattaneo et al, 2011) to understand the role of their non-visual systems in assisting navigation and location, little is discussed in terms of their other abilities in sensing particular qualities of space which impinge upon emotion. This paper reviews a collection of studies exploring face vision and echo-location, amongst others, which provide insight into what might be termed affective perception of the vision impaired, and how further interplay between this research and the architectural field can contribute new knowledge regarding space and affect. By engaging with themes from the Aesthetics, Phenomenology and indeed Neuro-science fields, the paper provides background of current and potential cross disciplinary research, and highlights the role wearable technologies can play in enhancing knowledge of affective spatial experience.
Resumo:
This study investigated questions related to half-occlusion processing in human stereoscopic vision: (1) How does the depth location of a half-occluding figure affect the depth localization of adjacent monocular objects? (2) Is three-dimensional slant around vertical axis (geometric effect) affected by half-occlusion constraints? and (3) How the half-occlusion constraints and surface formation processes are manifested in stereoscopic capture? Our results showed that the depth localization of binocular objects affects the depth localization of discrete monocular objects. We also showed that the visual system has a preference for a frontoparallel surface interpretation if the half-occlusion configuration allows multiple interpretation alternatives. When the surface formation was constrained by textures, our results showed that a process of rematching spreading determines the resulting perception and that the spreading can be limited by illusory contours that support the presence of binocularly unmatched figures. The unmatched figures could be present, if the inducing figures producing the illusory surface contained binocular image differences that provided cues for quantitative da Vinci stereopsis. These findings provide evidence of the significant role of half-occlusions in stereoscopic processing.