775 resultados para Observers
Resumo:
A key function of the brain is to interpret noisy sensory information. To do so optimally, observers must, in many tasks, take into account knowledge of the precision with which stimuli are encoded. In an orientation change detection task, we find that encoding precision does not only depend on an experimentally controlled reliability parameter (shape), but also exhibits additional variability. In spite of variability in precision, human subjects seem to take into account precision near-optimally on a trial-to-trial and item-to-item basis. Our results offer a new conceptualization of the encoding of sensory information and highlight the brain's remarkable ability to incorporate knowledge of uncertainty during complex perceptual decision-making.
Resumo:
In a typical experiment on decision making, one out of two possible stimuli is displayed and observers decide which one was presented. Recently, Stanford and colleagues (2010) introduced a new variant of this classical one-stimulus presentation paradigm to investigate the speed of decision making. They found evidence for "perceptual decision making in less than 30 ms". Here, we extended this one-stimulus compelled-response paradigm to a two-stimulus compelled-response paradigm in which a vernier was followed immediately by a second vernier with opposite offset direction. The two verniers and their offsets fuse. Only one vernier is perceived. When observers are asked to indicate the offset direction of the fused vernier, the offset of the second vernier dominates perception. Even for long vernier durations, the second vernier dominates decisions indicating that decision making can take substantial time. In accordance with previous studies, we suggest that our results are best explained with a two-stage model of decision making where a leaky evidence integration stage precedes a race-to-threshold process. © 2013 Rüter et al.
Resumo:
OBJECTIVE: This work is concerned with the creation of three-dimensional (3D) extended-field-of-view ultrasound from a set of volumes acquired using a mechanically swept 3D probe. 3D volumes of ultrasound data can be registered by attaching a position sensor to the probe; this can be an inconvenience in a clinical setting. A position sensor can also cause some misalignment due to patient movement and respiratory motion. We propose a combination of three-degrees-of-freedom image registration and an unobtrusively integrated inertial sensor for measuring orientation. The aim of this research is to produce a reliable and portable ultrasound system that is able to register 3D volumes quickly, making it suitable for clinical use. METHOD: As part of a feasibility study we recruited 28 pregnant females attending for routine obstetric scans to undergo 3D extended-field-of-view ultrasound. A total of 49 data sets were recorded. Each registered data set was assessed for correct alignment of each volume by two independent observers. RESULTS: In 77-83% of the data sets more than four consecutive volumes registered. The successful registration relies on good overlap between volumes and is adversely affected by advancing gestational age and foetal movement. CONCLUSION: The development of reliable 3D extended-field-of-view ultrasound may help ultrasound practitioners to demonstrate the anatomical relation of pathology and provide a convenient way to store data.
Resumo:
We consider the problem of positive observer design for positive systems defined on solid cones in Banach spaces. The design is based on the Hilbert metric and convergence properties are analyzed in the light of the Birkhoff theorem. Two main applications are discussed: positive observers for systems defined in the positive orthant, and positive observers on the cone of positive semi-definite matrices with a view on quantum systems. © 2011 IEEE.
Resumo:
Many researchers and industry observers claim that electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) could provide vehicle-to-grid (V2G) bulk energy and ancillary services to an electricity network. This work quantified the impact on various battery characteristics whilst providing such services. The sensitivity of the impact of V2G services on battery degradation was assessed for EV and PHEV for different battery capacities, charging regimes, and battery depth of discharge. Battery degradation was found to be most dependent on energy throughput for both the EV and PHEV powertrains, but was most sensitive to charging regime (for EVs) and battery capacity (for PHEVs). When providing ancillary services, battery degradation in both powertrains was most sensitive to individual vehicle battery depth of discharge. Degradation arising from both bulk energy and ancillary services could be minimised by reducing the battery capacity of the vehicle, restricting the number of hours connected and reducing the depth of discharge of each vehicle for ancillary services. Regardless, best case minimum impacts of providing V2G services are severe such as to require multiple battery pack replacements over the vehicle lifetime. © 2013 Elsevier Ltd.
Resumo:
Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. (C) 2008 Acoustical Society of America.
Resumo:
We present a method for checking the Peres separability criterion in an arbitrary bipartite quantum state rho(AB) within local operations and classical communication scenario. The method does not require noise operation which is needed in making the partial transposition map physically implementable. The main task for the two observers, Alice and Bob, is to measure some specific functions of the partial transposed matrix. With these functions, they can determine the eigenvalues of rho(T)(AB)(B), among which the minimum serves as an entanglement witness.
Resumo:
We present a parametrically efficient method for measuring the entanglement of formation E-f in an arbitrarily given unknown two-qubit state rho(AB) by local operations and classical communication. The two observers, Alice and Bob, first perform some local operations on their composite systems separately, by which the desired global quantum states can be prepared. Then they estimate seven functions via two modified local quantum networks supplemented a classical communication. After obtaining these functions, Alice and Bob can determine the concurrence C and the entanglement of formation E-f.
Resumo:
We propose a more general method for detecting a set of entanglement measures, i.e., negativities, in an arbitrary tripartite quantum state by local operations and classical communication. To accomplish the detection task using this method, three observers do not need to perform partial transposition maps by the structural physical approximation; instead, they only need to collectively measure some functions via three local networks supplemented by a classical communication. With these functions, they are able to determine the set of negativities related to the tripartite quantum state.
Resumo:
We present a modified method for detecting the concurrence in an arbitrary two-qubit quantum state rho(AB) with local operations and classical communication. In this method, it is not necessary for the two observers to prepare the quantum state rho(AB) by the structural physical approximation. Their main task is to measure four specific functions via two local quantum networks. With these functions they can determine the concurrence and then the entanglement of formation.
Resumo:
Theories of Visual search generally differentiate between bottom-up control and top-down control. Bottom-up control occurs when visual selection is determined by the stimulus properties in the search field. Top-down control takes place when observers are able to select those stimuli that are in line with their attentional sets. Pure stimulus-driven capture and contingent capture are two main theories on attentional capture by now, in which, theory of pure capture more emphasize bottom-up control, while theory of contingent capture more emphasize top-down control. Besides those two theories, Perceptual load theory of attention provides completely new perspective to explain attentional capture. The aim of this study is to investigate the mechanism of attentional capture in visual search on the basis of the existing theory of attentional capture and Perceptual load theory of attention. Three aspects of questions were explored in this study, which includes: the modulation role of perceptual load on attentional capture; the influence of search mode on attentional capture; and the influence of stimuli’s spatial and temporal characteristics on attentional capture. The results showed that: (1) Attentional capture was modulated by perceptual load in both conditions in which perceptual load manipulated either by amount of stimuli or similarity of stimuli. (2) Search mode did influence attentional capture, but more important, which was also modulated by perceptual load. (3) The spatial characteristics of congruent and incongruent distractor did influence attentional capture, specifically, the further the distractor from the target, the more interference effect the distractor had on visual search. (4) The temporal characteristics of distractor did influence attentional capture, specifically, the pattern of results from the study in which distractor were presented after the search display, were similar to those from the study in which distractors were presented before the search display. In sum, the results indicated that attentional capture are controlled not only by bottom-up factors, top-down factors but also modulated by available attention resources. These findings contribute to resolve the controversy for mechanism of attentional capture. And the potential application of this research was discussed.
Resumo:
We present a model for recovering the direction of heading of an observer who is moving relative to a scene that may contain self-moving objects. The model builds upon an algorithm proposed by Rieger and Lawton (1985), which is based on earlier work by Longuet-Higgens and Prazdny (1981). The algorithm uses velocity differences computed in regions of high depth variation to estimate the location of the focus of expansion, which indicates the observer's heading direction. We relate the behavior of the proposed model to psychophysical observations regarding the ability of human observers to judge their heading direction, and show how the model can cope with self-moving objects in the environment. We also discuss this model in the broader context of a navigational system that performs tasks requiring rapid sensing and response through the interaction of simple task-specific routines.
Resumo:
A key question regarding primate visual motion perception is whether the motion of 2D patterns is recovered by tracking distinctive localizable features [Lorenceau and Gorea, 1989; Rubin and Hochstein, 1992] or by integrating ambiguous local motion estimates [Adelson and Movshon, 1982; Wilson and Kim, 1992]. For a two-grating plaid pattern, this translates to either tracking the grating intersections or to appropriately combining the motion estimates for each grating. Since both component and feature information are simultaneously available in any plaid pattern made of contrast defined gratings, it is unclear how to determine which of the two schemes is actually used to recover the plaid"s motion. To address this problem, we have designed a plaid pattern made with subjective, rather than contrast defined, gratings. The distinguishing characteristic of such a plaid pattern is that it contains no contrast defined intersections that may be tracked. We find that notwithstanding the absence of such features, observers can accurately recover the pattern velocity. Additionally we show that the hypothesis of tracking "illusory features" to estimate pattern motion does not stand up to experimental test. These results present direct evidence in support of the idea that calls for the integration of component motions over the one that mandates tracking localized features to recover 2D pattern motion. The localized features, we suggest, are used primarily as providers of grouping information - which component motion signals to integrate and which not to.
Resumo:
The problem of using image contours to infer the shapes and orientations of surfaces is treated as a problem of statistical estimation. The basis for solving this problem lies in an understanding of the geometry of contour formation, coupled with simple statistical models of the contour generating process. This approach is first applied to the special case of surfaces known to be planar. The distortion of contour shape imposed by projection is treated as a signal to be estimated, and variations of non-projective origin are treated as noise. The resulting method is then extended to the estimation of curved surfaces, and applied successfully to natural images. Next, the geometric treatment is further extended by relating countour curvature to surface curvature, using cast shadows as a model for contour generation. This geometric relation, combined with a statistical model, provides a measure of goodness-of-fit between a surface and an image contour. The goodness-of-fit measure is applied to the problem of establishing registration between an image and a surface model. Finally, the statistical estimation strategy is experimentally compared to human perception of orientation: human observers' judgements of tilt correspond closely to the estimates produced by the planar strategy.
Resumo:
Jackson, Peter; Siegel, Jennifer., 'Historical Reflections on the Uses and Limits of Intelligence', In: Intelligence and Statecraft: The Use and Limits of Intelligence in International Society (Westport, CT: Praeger, 2005), pp.11-51 RAE2008