946 resultados para Observer Variability
Resumo:
Airway inflammation is a key feature of bronchial asthma. In asthma management, according to international guidelines, the gold standard is anti-inflammatory treatment. Currently, only conventional procedures (i.e., symptoms, use of rescue medication, PEF-variability, and lung function tests) were used to both diagnose and evaluate the results of treatment with anti-inflammatory drugs. New methods for evaluation of degree of airway inflammation are required. Nitric oxide (NO) is a gas which is produced in the airways of healthy subjects and especially produced in asthmatic airways. Measurement of NO from the airways is possible, and NO can be measured from exhaled air. Fractional exhaled NO (FENO) is increased in asthma, and the highest concentrations are measured in asthmatic patients not treated with inhaled corticosteroids (ICS). Steroid-treated patients with asthma had levels of FENO similar to those of healthy controls. Atopic asthmatics had higher levels of FENO than did nonatopic asthmatics, indicating that level of atopy affected FENO level. Associations between FENO and bronchial hyperresponsiveness (BHR) occur in asthma. The present study demonstrated that measurement of FENO had good reproducibility, and the FENO variability was reasonable both short- and long-term in both healthy subjects and patients with respiratory symptoms or asthma. We demonstrated the upper normal limit for healthy subjects, which was 12 ppb calculated from two different healthy study populations. We showed that patients with respiratory symptoms who did not fulfil the diagnostic criteria of asthma had FENO values significantly higher than in healthy subjects, but significantly lower than in asthma patients. These findings suggest that BHR to histamine is a sensitive indicator of the effect of ICS and a valuable tool for adjustment of corticosteroid treatment in mild asthma. The findings further suggest that intermittent treatment periods of a few weeks’ duration are insufficient to provide long-term control of BHR in patients with mild persistent asthma. Moreover, during the treatment with ICS changes in BHR and changes in FENO were associated. FENO level was associated with BHR measured by a direct (histamine challenge) or indirect method (exercise challenge) in steroid-naïve symptomatic, non-smoking asthmatics. Although these associations could be found only in atopics, FENO level in nonatopic asthma was also increased. It can thus be concluded that assessment of airway inflammation by measuring FENO can be useful for clinical purposes. The methodology of FENO measurements is now validated. Especially in those patients with respiratory symptoms who did not fulfil the diagnostic criteria of asthma, FENO measurement can aid in treatment decisions. Serial measurement of FENO during treatment with ICS can be a complementary or an alternative method for evaluation in patients with asthma.
Resumo:
A generalized technique is proposed for modeling the effects of process variations on dynamic power by directly relating the variations in process parameters to variations in dynamic power of a digital circuit. The dynamic power of a 2-input NAND gate is characterized by mixed-mode simulations, to be used as a library element for 65mn gate length technology. The proposed methodology is demonstrated with a multiplier circuit built using the NAND gate library, by characterizing its dynamic power through Monte Carlo analysis. The statistical technique of Response. Surface Methodology (RSM) using Design of Experiments (DOE) and Least Squares Method (LSM), are employed to generate a "hybrid model" for gate power to account for simultaneous variations in multiple process parameters. We demonstrate that our hybrid model based statistical design approach results in considerable savings in the power budget of low power CMOS designs with an error of less than 1%, with significant reductions in uncertainty by atleast 6X on a normalized basis, against worst case design.
Resumo:
This thesis contains three subject areas concerning particulate matter in urban area air quality: 1) Analysis of the measured concentrations of particulate matter mass concentrations in the Helsinki Metropolitan Area (HMA) in different locations in relation to traffic sources, and at different times of year and day. 2) The evolution of traffic exhaust originated particulate matter number concentrations and sizes in local street scale are studied by a combination of a dispersion model and an aerosol process model. 3) Some situations of high particulate matter concentrations are analysed with regard to their meteorological origins, especially temperature inversion situations, in the HMA and three other European cities. The prediction of the occurrence of meteorological conditions conducive to elevated particulate matter concentrations in the studied cities is examined. The performance of current numerical weather forecasting models in the case of air pollution episode situations is considered. The study of the ambient measurements revealed clear diurnal variation of the PM10 concentrations in the HMA measurement sites, irrespective of the year and the season of the year. The diurnal variation of local vehicular traffic flows seemed to have no substantial correlation with the PM2.5 concentrations, indicating that the PM10 concentrations were originated mainly from local vehicular traffic (direct emissions and suspension), while the PM2.5 concentrations were mostly of regionally and long-range transported origin. The modelling study of traffic exhaust dispersion and transformation showed that the number concentrations of particles originating from street traffic exhaust undergo a substantial change during the first tens of seconds after being emitted from the vehicle tailpipe. The dilution process was shown to dominate total number concentrations. Minimal effect of both condensation and coagulation was seen in the Aitken mode number concentrations. The included air pollution episodes were chosen on the basis of occurrence in either winter or spring, and having at least partly local origin. In the HMA, air pollution episodes were shown to be linked to predominantly stable atmospheric conditions with high atmospheric pressure and low wind speeds in conjunction with relatively low ambient temperatures. For the other European cities studied, the best meteorological predictors for the elevated concentrations of PM10 were shown to be temporal (hourly) evolutions of temperature inversions, stable atmospheric stability and in some cases, wind speed. Concerning the weather prediction during particulate matter related air pollution episodes, the use of the studied models were found to overpredict pollutant dispersion, leading to underprediction of pollutant concentration levels.
Resumo:
1] The poor predictability of the Indian summer monsoon ( ISM) appears to be due to the fact that a large fraction of interannual variability (IAV) is governed by unpredictable "internal'' low frequency variations. Mechanisms responsible for the internal IAV of the monsoon have not been clearly identified. Here, an attempt has been made to gain insight regarding the origin of internal IAV of the seasonal ( June - September, JJAS) mean rainfall from "internal'' IAV of the ISM simulated by an atmospheric general circulation model (AGCM) driven by fixed annual cycle of sea surface temperature (SST). The underlying hypothesis that monsoon ISOs are responsible for internal IAV of the ISM is tested. The spatial and temporal characteristics of simulated summer intraseasonal oscillations ( ISOs) are found to be in good agreement with those observed. A long integration with the AGCM forced with observed SST, shows that ISO activity over the Asian monsoon region is not modulated by the observed SST variations. The internal IAV of ISM, therefore, appears to be decoupled from external IAV. Hence, insight gained from this study may be useful in understanding the observed internal IAV of ISM. The spatial structure of the ISOs has a significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season ( seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broad-band nature of the ISO spectrum allowing the time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relation is a manifestation of the binomial character of rainfall time series. The remaining 50% of the IAV may arise due to land-surface processes, interaction between high frequency variability and ISOs, etc.
Resumo:
Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.
Resumo:
Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Resumo:
Species specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm’ region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Resumo:
In this paper, we propose a novel and efficient algorithm for modelling sub-65 nm clock interconnect-networks in the presence of process variation. We develop a method for delay analysis of interconnects considering the impact of Gaussian metal process variations. The resistance and capacitance of a distributed RC line are expressed as correlated Gaussian random variables which are then used to compute the standard deviation of delay Probability Distribution Function (PDF) at all nodes in the interconnect network. Main objective is to find delay PDF at a cheaper cost. Convergence of this approach is in probability distribution but not in mean of delay. We validate our approach against SPICE based Monte Carlo simulations while the current method entails significantly lower computational cost.
Resumo:
In Minkowski space, an accelerated reference frame may be defined as one that is related to an inertial frame by a sequence of instantaneous Lorentz transformations. Such an accelerated observer sees a causal horizon, and the quantum vacuum of the inertial observer appears thermal to the accelerated observer, also known as the Unruh effect. We argue that an accelerating frame may be similarly defined (i.e. as a sequence of instantaneous Lorentz transformations) in noncommutative Moyal spacetime, and discuss the twisted quantum field theory appropriate for such an accelerated observer. Our analysis shows that there are several new features in the case of noncommutative spacetime: chiral massless fields in (1 + 1) dimensions have a qualitatively different behavior compared to massive fields. In addition, the vacuum of the inertial observer is no longer an equilibrium thermal state of the accelerating observer, and the Bose-Einstein distribution acquires.-dependent corrections.
Resumo:
The importance and usefulness of local doublet parameters in understanding sequence dependent effects has been described for A- and B-DNA oligonucleotide crystal structures. Each of the two sets of local parameters described by us in the NUPARM algorithm, namely the local doublet parameters, calculated with reference to the mean z-axis, and the local helical parameters, calculated with reference to the local helix axis, is sufficient to describe the oligonucleotide structures, with the local helical parameters giving a slightly magnified picture of the variations in the structures. The values of local doublet parameters calculated by NUPARM algorithm are similar to those calculated by NEWHELIX90 program, only if the oligonucleotide fragment is not too distorted. The mean values obtained using all the available data for B-DNA crystals are not significantly different from those obtained when a limited data set is used, consisting only of structures with a data resolution of better than 2.4 A and without any bound drug molecule. Thus the variation observed in the oligonucleotide crystals appears to be independent of the quality of their crystallinity. No strong correlation is seen between any pair of local doublet parameters but the local helical parameters are interrelated by geometric relationships. An interesting feature that emerges from this analysis is that the local rise along the z-axis is highly correlated with the difference in the buckle values of the two basepairs in the doublet, as suggested earlier for the dodecamer structures (Bansal and Bhattacharyya, in Structure & Methods: DNA & RNA, Vol. 3 (Eds., R.H. Sarma and M.H. Sarma), pp. 139-153 (1990)). In fact the local rise values become almost constant for both A- and B-forms, if a correction is applied for the buckling of the basepairs. In B-DNA the AA, AT, TA and GA basepair sequences generally have a smaller local rise (3.25 A) compared to the other sequences (3.4 A) and this seems to be an intrinsic feature of basepair stacking interaction and not related to any other local doublet parameter. The roll angles in B-DNA oligonucleotides have small values (less than +/- 8 degrees), while mean local twist varies from 24 degrees to 45 degrees. The CA/TG doublet sequences show two types of preferred geometries, one with positive roll, small positive slide and reduced twist and another with negative roll, large positive slide and increased twist.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
The crystal structure of 2',3'-O-isopropylidene inosine shows a number of interesting features. The four independent molecules in the asymmetric unit exhibit significant conformational variations. Ribose puckers fall in the O(4')-exo region, unfavourable in unsubstituted nucleosides. Hypoxanthine bases show base-pairing (I.I) in a manner analogous to the guanine self pairs (G.G) in 2',3'-O-isopropylidene guanosine but with a C(2)-H…O(6) hydrogen bond instead of N(2)-H…O(6).
Resumo:
The finite predictability of the coupled ocean-atmosphere system is determined by its aperiodic variability. To gain insight regarding the predictability of such a system, a series of diagnostic studies has been carried out to investigate the role of convergence feedback in producing the aperiodic behavior of the standard version of the Cane-Zebiak model. In this model, an increase in sea surface temperature (SST) increases atmospheric heating by enhancing local evaporation (SST anomaly feedback) and low-level convergence (convergence feedback). The convergence feedback is a nonlinear function of the background mean convergence field. For the set of standard parameters used in the model, it is shown that the convergence feedback contributes importantly to the aperiodic behaviour of the model. As the strength of the convergence feedback is increased from zero to its standard value, the model variability goes from a periodic regime to an aperiodic regime through a broadening of the frequency spectrum around the basic periodicity of about 4 years. Examination of the forcing associated with the convergence feedback reveals that it is intermittent, with relatively large amplitude only during 2 or 3 months in the early part of the calendar year. This seasonality in the efficiency of the convergence feedback is related to the strong seasonality of the mean convergence over the eastern Pacific. It is shown that if the mean convergence field is fixed at its March value, aperiodic behavior is produced even in the absence of annual cycles in the other mean fields. On the, other hand, if the mean convergence field is fixed at its September value, the coupled model evolution remains close to periodic, even in the presence of the annual cycle in the other fields. The role of convergence feedback on the aperiodic variability of the model for other parameter regimes is also examined. It is shown that a range exists in the strength of the SST anomaly feedback for which the model variability is aperiodic even without the convergence feedback. It appears that in the absence of convergence feedback, enhancement of the strength of the air-sea coupling in the model through other physical processes also results in aperiodicity in the model.
Resumo:
A conceptual model is proposed to explain the observed aperiodicity in the short term climate fluctuations of the tropical coupled ocean-atmosphere system. This is based on the evidence presented here that the tropical coupled ocean-atmosphere system sustains a low frequency inter-annual mode and a host of higher frequency intra-seasonal unstable modes. At long wavelengths, the low frequency mode is dominant while at short wavelengths, the high frequency modes are dominant resulting in the co-existence of a long wave low frequency mode with some short wave intra-seasonal modes in the tropical coupled system. It is argued that due to its long wavelength, the low frequency mode would behave like a linear oscillator while the higher frequency short wave modes would be nonlinear. The conceptual model envisages that an interaction between the low frequency linear oscillator and the high frequency nonlinear oscillations results in the observed aperiodicity of the tropical coupled system. This is illustrated by representing the higher frequency intra-seasonal oscillations by a nonlinear low order model which is then coupled to a linear oscillator with a periodicity of four years. The physical mechanism resulting in the aperiodicity in the low frequency oscillations and implications of these results on the predictability of the coupled system are discussed.
Resumo:
A sample of 96 compact flat-spectrum extragalactic sources, spread evenly over all galactic latitudes, has been studied at 327 MHz for variability over a time interval of about 15 yr. The variability shows a dependence on galactic latitude being less both at low and high latitudes and peaking around absolute value of b approximately 15-degrees. The latitude dependence is surprisingly similar in both the galactic centre and anticentre directions. Assuming various single and multi-component distributions for the ionized, irregular interstellar plasma, we have tried to generate the observed dependence using a semi-qualitative treatment of refractive interstellar scintillations. We find that it is difficult to fit our data with any single or double component cylindrical distribution. Our data suggests that the observed variability could be influenced by the spiral structure of our Galaxy.