945 resultados para ORTHOPHOSPHATE NANOWIRES
Resumo:
Uniform ZnSe nanowires are observed on the ablation crater on ZnSe crystal surface irradiated by femtosecond lasers in air, while other parts of the sample surface are not polluted. The nanowire growth rate is about 5 mu m/s, it is higher than that fabricated by chemical vapor deposition method by a factor of 10(4). The nanowire length and diameter can be controlled by varying laser pulse energy and pulse number. The formation mechanism is studied and found to be self-catalyzed vapor-liquid-solid process. (c) 2006 American Institute of Physics.
Resumo:
An experimental study was made of the interaction of phosphate rock and aqueous inorganic orthophosphate, calcium, and hydroxyl ions. A model of the reaction was developed by observing electron diffraction patterns in conjunction with concentration changes of chemical components. The model was applied in explaining the performance of batch suspensions of powdered phosphate rock and packed columns of granular phosphate rock. In both cases the reaction consisted initially of a rapid nucleation phase that occurred in a time period of minutes. In the batch system the calcium phosphate nuclei then ripened into larger micro-crystals of hydroxyapatite, which eventually became indistinguishable from the original phosphate rock surface. During column operation the high supersaturation ratio that existed after the rapid nucleation phase resulted in a layer of small nuclei that covered a slowly growing hydroxyapatite crystal.
The column steady-state rate constant was found to increase with increasing temperature, pH, and fluoride concentration, and to decrease with increasing concentrations of magnesium sulfate, ammonium chloride, and bicarbonate ion.
An engineering feasibility study indicated that, based on economic considerations, nucleation of apatite on phosphate rock ore has a potential use as a wastewater phosphate removal treatment process.
Resumo:
Computational protein design (CPD) is a burgeoning field that uses a physical-chemical or knowledge-based scoring function to create protein variants with new or improved properties. This exciting approach has recently been used to generate proteins with entirely new functions, ones that are not observed in naturally occurring proteins. For example, several enzymes were designed to catalyze reactions that are not in the repertoire of any known natural enzyme. In these designs, novel catalytic activity was built de novo (from scratch) into a previously inert protein scaffold. In addition to de novo enzyme design, the computational design of protein-protein interactions can also be used to create novel functionality, such as neutralization of influenza. Our goal here was to design a protein that can self-assemble with DNA into nanowires. We used computational tools to homodimerize a transcription factor that binds a specific sequence of double-stranded DNA. We arranged the protein-protein and protein-DNA binding sites so that the self-assembly could occur in a linear fashion to generate nanowires. Upon mixing our designed protein homodimer with the double-stranded DNA, the molecules immediately self-assembled into nanowires. This nanowire topology was confirmed using atomic force microscopy. Co-crystal structure showed that the nanowire is assembled via the desired interactions. To the best of our knowledge, this is the first example of a protein-DNA self-assembly that does not rely on covalent interactions. We anticipate that this new material will stimulate further interest in the development of advanced biomaterials.
Resumo:
We present a simple route for ZnSe nanowire growth in the ablation crater on a ZnSe crystal surface. The crystal wafer, which was horizontally dipped in pure water, was irradiated by femtosecond laser pulses. No furnace, vacuum chamber or any metal catalyst were used in this experiment. The size of the nanowires is about 1-3 mu m long and 50-150 nm in diameter. The growth rate is 1-3 mu m/s, which is much higher than that achieved with molecular-beam epitaxy and chemical vapor deposition methods. Our discovery reveals a rapid and simple way to grow nanowires on designed micro-patterns, which may have potential applications in microscopic optoelectronics. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Silver nanowires in large quantities can be obtained through a simple method in the absence of a surfactant or polymer and without addition of external seeding nanocrystallites. A plausible mechanism was proposed to elucidate the formation mechanism of silver nanowires based on TEM studies.
Resumo:
High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate glass nanowires are observed. Supporting high-index tellurite nanowires with solid substrates (such as silica glass and MgF2 crystal) and assembling low-loss microcoupler with these wires are also demonstrated. Photonic nanowires demonstrated in this work may open up vast opportunities for making versatile building blocks for future micro- and nanoscale photonic circuits and components. (c) 2006 Optical Society of America.