993 resultados para ORTHO-PYROXENE
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Resumo:
Rotational spectra of five isotopologues of the title complex, C(6)H(5)CCH center dot center dot center dot H(2)O, C(6)H(5)CCH center dot center dot center dot HOD, C(6)H(5)CCH center dot center dot center dot D(2)O, C(6)H(5)CCH center dot center dot center dot H(2)(18)O and C(6)H(5)CCD center dot center dot center dot H(2)O, were measured and analyzed. The parent isotopologue is an asymmetric top with kappa = -0.73. The complex is effectively planar (ab inertial plane) and both `a' and `b' dipole transitions have been observed but no c dipole transition could be seen. All the transitions of the parent complex are split into two resulting from an internal motion interchanging the two H atoms in H(2)O. This is confirmed by the absence of such doubling for the C(6)H(5)CCH center dot center dot center dot HOD complex and a significant reduction in the splitting for the D(2)O analog. The rotational spectra, unambiguously, reveal a structure in which H(2)O has both O-H center dot center dot center dot pi (pi cloud of acetylene moiety) and C-H center dot center dot center dot O (ortho C-H group of phenylacetylene) interactions. This is in agreement with the structure deduced by IR-UV double resonance studies (Singh et al., J. Phys. Chem. A, 2008, 112, 3360) and also with the global minimum predicted by advanced electronic structure theory calculations (Sedlack et al., J. Phys. Chem. A, 2009, 113, 6620). Atoms in Molecule (AIM) theoretical analysis of the complex reveals the presence of both O-H center dot center dot center dot pi and C-H center dot center dot center dot O hydrogen bonds. More interestingly, based on the electron densities at the bond critical points, this analysis suggests that both these interactions are equally strong. Moreover, the presence of both these interactions leads to significant deviation from linearity of both hydrogen bonds.
Resumo:
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (1 0 0) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200 degrees C for their possible use in optoelectronic applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The tie lines between (CoXMg1−X)O solid solution with rock salt structure and orthosilicate solid solution (CoYMg1−Y)-Si0.5O2, and between orthosilicate and metasilicate (CoZMg1-Z)SiO3 crystalline solutions, have been determined experimentally at 1373 K. The compositions of coexisting phases have been determined by electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples. The metasilicate solid solution exists only for 0 > Z > 0.213. The activity of CoO in the rock salt solid solution was determined as a function of composition and temperature in the range of 1023 to 1373 K using a solid-state galvanic cell: Pt, (CoXMg1−X)O+Co|(Y2O3)ZrO2|Co+CoO, Pt The free energy of mixing of (CoXMg1−X)O crystalline solution can be expressed by the equation ΔGE=X(1 −X)[(6048 − 2.146T)X+ (8745 − 3.09T)(1 −X)] J·mol−1 The thermodynamic data for the rock salt phase is combined with information on interphase partitioning of Co and Mg to generate the mixing properties for the ortho- and metasilicate solid solutions. For the orthosilicate solution (CoYMg1 −Y)Si0.5O2 at 1373 K, the excess Gibbs free energy of mixing is given by the relation ΔGE=Y(1 −Y)[2805Y+ 3261(1 −Y)] J·mol−1 For the metasilicate solution (CoZMg1 −Z)SiO3 at the same temperature, the excess free energy can be expressed by the relation ΔGE=Z(1 −Z)[2570Z+ 3627(1 −Z)] J·mol−1
Resumo:
The determination of the crystal and molecular structures of a large number of compounds containing the C(sp(2))-F bond has been investigated in detail in halogenated benzanilides and also in liquids, namely the fluorinated amines. It has been observed that when the fluorine atom is present in the ortho or meta position with respect to the amide functionality in benzanilides or the amino group in fluorinated amines which are liquids at room temperature, the fluorine atom exhibits positional disorder. This is associated with changes in patterns of intermolecular interactions which affect crystal packing. Furthermore, the presence of a fluorine atom on the benzanilide framework, in the presence of a heavier halogen (chloro, bromo and iodo), meta or ortho to the amide group does not eliminate the disorder associated with these molecules. In this article, we highlight the salient features present in halogenated compounds exhibiting disorder in the position of organic fluorine with concomitant changes in crystal packing. This feature is also compared with related compounds exhibiting similarity in electronic features, namely positional disorder.
Resumo:
The host-guest chemistry of most inorganic layered solids is limited to ion-exchange reactions. The guest species are either cations or anions to compensate for the charge deficit, either positive or negative, of the inorganic layers. Here, we outline a strategy to include neutral molecules like ortho- and para-chloranil, that are known to be good acceptors in donor-acceptor or charge-transfer complexes, within the galleries of a layered solid. We have succeeded in including neutral ortho- and para-chloranil molecules within the galleries of an Mg-Al layered double hydroxide (LDH) by using charge-transfer interactions with preintercalated p-aminobenzoate ions as the driving force. The p-aminobenzoate ions are introduced in the Mg-Al LDH via ion exchange. The intercalated LDH can adsorb ortho- and para-chloranil from chloroform solutions by forming charge-transfer complexes with the p-aminobenzoate anions present in the galleries. We use X-ray diffraction, spectroscopy, and molecular dynamics simulations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide.
Resumo:
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (mu) of 0.28 day(-1) and biomass productivities of 132 mg L-1 day(-1). The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g L-1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.
Resumo:
A highly regioselective alkenylation of indole at the C2-position has been achieved using the Ru(II) catalyst by employing a directing group strategy. This strategy offers rare selectivity for the alkenylation N-benzoylindole at the C-2 position in the presence of the more active C3- and C7-position of indole and the ortho-positions of the benzoyl protecting group. A simple deprotection of the benzoyl group has also been exemplified, and the resulting product serves as a useful synthon for natural product syntheses.
Resumo:
Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Cation sensing properties of the three positional isomers of rhodamine based sensors (1-3) are studied in water. The sensors differ only in the position of pyridine's nitrogen. The chemosensor 1, with pyridine nitrogen at ortho-position, showed a selective colorimetric detection of Cu(II) ions in water, at physiological pH 7.4 and also in medium containing BSA (bovine serum albumin) and blood serum. Notably the compound 2 and 3, with pyridine end located at meta-and para-positions did not show any color change with Cu(II) ions, although both the compounds showed turn-on change both in color and fluorescence with Hg(II) ions specifically. All the probes showed ratiometric changes with the specific metal ions. The changing position of nitrogen also changed the complexation pattern of the sensors with the metal ions. Probe 1 showed 2 : 1 complexation with Cu(II), whereas 2 and 3 showed 1 : 1 complexation with Hg(II) ions. The mechanism investigation showed that the change in color upon addition of metal ions is due to the ring-opening of the spirolactam ring of the probes. Cu(II) interacted with ligand 1 through a three-point interaction mode comprising carbonyl oxygen, amido nitrogen and pyridine nitrogen end. But in case of 2 and 3, Hg2+ only interacted through pyridine nitrogen ends. Quantitative estimation of Cu2+ and Hg2+ in complex biological media such as bovine albumin protein (BSA) and human blood serum were performed using these sensors. Rapid on-site detection as well as discrimination of these toxic ions was demonstrated using easily prepared portable test-strips.
Resumo:
Using isothermal equilibration, phase relations are established in the system Sm-Rh-O at 1273 K. SmRhO3 with GdFeO3-type perovskite structure is found to be the only ternary phase. Solid-state electrochemical cells, containing calcia-stabilized zirconia as an electrolyte, are used to measure the thermodynamic properties of SmRhO3 formed from their binary component oxides Rh2O3 (ortho) and Sm2O3 (C-type and B-type) in two different temperature ranges. Results suggest that C-type Sm2O3 with cubic structure transforms to B-type Sm2O3 with monoclinic structure at 1110 K. The standard Gibbs energy of transformation is . Standard Gibbs energy of formation of SmRhO3 from binary component oxides Rh2O3 and Sm2O3 with B-type rare earth oxide structure can be expressed as . The decomposition temperature of SmRhO3 estimated from the extrapolation of electrochemical data is 1665 (+/- 2) K in air and 1773 (+/- 3) K in pure oxygen. Temperature-composition diagrams at constant oxygen pressures are constructed for the system Sm-Rh-O. Employing the thermodynamic data for SmRhO3 from emf measurement and auxiliary data for other phases from the literature, oxygen potential-composition phase diagram and 3-D chemical potential diagram for the system Sm-Rh-O at 1273 K are developed.
Resumo:
A Cu2+-selective metallo(hydro) gelation of a p-pyridyl ended oligophenylenevinylene system is reported over its respective meta- and ortho-regioisomers. The metallogel formed via the self-assembly of the nanoscale-metal-organic particles is injectable and also shows multi-stimuli responsiveness, including thixotropy.
Resumo:
Autoxidation of pyrogallol in alkaline medium is characterized by increases in oxygen consumption, absorbance at 440 nm, and absorbance at 600 nm. The primary products are H2O2 by reduction of O-2 and pyrogallol-ortho-quinone by oxidation of pyrogallol. About 20 % of the consumed oxygen was used for ring opening leading to the bicyclic product, purpurogallin-quinone (PPQ). The absorbance peak at 440 nm representing the quinone end-products increased throughout at a constant rate. Prolonged incubation of pyrogallol in alkali yielded a product with ESR signal. In contrast the absorbance peak at 600 nm increased to a maximum and then declined after oxygen consumption ceased. This represents quinhydrone charge-transfer complexes as similar peak instantly appeared on mixing pyrogallol with benzoquinones, and these were ESR-silent. Superoxide dismutase inhibition of pyrogallol autoxidation spared the substrates, pyrogallol, and oxygen, indicating that an early step is the target. The SOD concentration-dependent extent of decrease in the autoxidation rate remained the same regardless of higher control rates at pyrogallol concentrations above 0.2 mM. This gave the clue that SOD is catalyzing a reaction that annuls the forward electron transfer step that produces superoxide and pyrogallol-semiquinone, both oxygen radicals. By dismutating these oxygen radicals, an action it is known for, SOD can reverse autoxidation, echoing the reported proposal of superoxide:semiquinone oxidoreductase activity for SOD. The following insights emerged out of these studies. The end-product of pyrogallol autoxidation is PPQ, and not purpurogallin. The quinone products instantly form quinhydrone complexes. These decompose into undefined humic acid-like complexes as late products after cessation of oxygen consumption. SOD catalyzes reversal of autoxidation manifesting as its inhibition. SOD saves catechols from autoxidation and extends their bioavailability.
Resumo:
3-Aryl-2-propenoic acid derivatives undergo interesting reactions with hot triethylamine. Substrates like 6 having a methoxyl with a nitro in the ortho and cyanoacrylic derivatives in the para positions give O-demethylated products, for example, entacapone 7. On the other hand compounds like 16 having the NO2 in the para and cyanoacrylic in the ortho position undergo reduction and vinylogation. The latter phenomenon is observed in the absence of the NO2 group also. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The five-coordinated 16-electron complex Ru(Me)(dppe)(2)]OTf] (3) undergoes methane elimination at room temperature to afford the ortho-metalated species (dppe){(C6H5)(C6H4)PCH2CH2P(C6H5)(2)}Ru]OTf] (7). Methane elimination, monitored using NMR spectroscopy, revealed no intermediate throughout the reaction. The NOE between Ru-Me protons and ortho phenyl protons and an agostic interaction trans to the methyl group were found in complex 3 by NMR spectroscopy, which form the basis for three plausible pathways for methane elimination and ortho metalation: pathway I (through spatial interaction), pathway II (through oxidative addition and reductive elimination), and pathway III (through agostic interaction). Methane elimination from complex 3 via pathway I was discounted, since it involves interactions through space and not through bonds. Moreover, the calculated energy barrier for the pathway I transition state was quite high (71.3 kcal/mol), which also indicates that this pathway is very unlikely. Furthermore, no spectroscopic evidence for oxidatively added seven-coordinated Ru(IV) species was found and the computed energy barrier of the transition state for pathway II was moderately high (41.1 kcal/mol), which suggests that this cannot be the right pathway for methane elimination and ortho-metalation of complex 3. On the other hand, indirect evidence in the form of chemical reactions point to the most plausible pathway for methane elimination, pathway III, via the intermediacy of a sigma-CH4 complex that could not be found spectroscopically. DFT calculations at several levels on this pathway showed an initial low-barrier rearrangement through TS1 to a square-pyramidal intermediate wherein methyl and agostic C-H are cis to each other. Migration of hydrogen from agostic C-H and elimination of methane proceed through the transition state TS2, which retains a weak metal-H bonding through most parts of the reaction coordinate. Upon comparison of all three pathways, pathway III was found to be the most likely for methane elimination and ortho-metalation of complex 3.