967 resultados para OBSTRUCTIVE NEPHROPATHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Diabetic nephropathy (DN) is a microvascular complication of diabetes. Members of the WNT/ β-catenin pathways have been implicated in interstitial fibrosis and glomerular sclerosis, characteristic hallmarks of DN. These processes are controlled, in part, by transcription factors (TFs), proteins which bind to gene promoter regions attenuating their regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBS) over-represented within the promoter regions of WNT pathway members compared to genes across the genome.Methods: We assessed the frequency of 62 TFBS motifs from the JASPAR databases on 65 WNT pathway genes. P-values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined from DN-related datasets to assess clinical significance.Results: TFBS motifs transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P-values<6.83x10-29, 1.34x10-11 and 3.01x10-6 respectively). MZF1 gene expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A gene expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). SP1 was not differentially expressed in any datasets examined.Conclusions: Three TFBS profiles are significantly enriched within the WNT pathway genes examined highlighting the use of in silico analyses for identifying key regulators of this pathway. Modification of TF binding to gene promoter regions involved in DN pathology may limit progression, making refinement of targeted therapeutic strategies possible through clearer delineation of their role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including chronic obstructive pulmonary disease (COPD). However, it’s detection and quantification in biological samples is confounded by a lack of reliable and robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex clinical samples containing multiple proteolytic and hydrolytic enzymes which have the ability to hydrolyse the substrate, thereby resulting in an over-estimation of the target protease. Furthermore, ELISA systems measure total protease levels which can be a mixture of latent, active and protease-inhibitor complexes. Therefore, we have developed a novel immunoassay (ProteaseTag™ Active NE Immunoassay) which is selective and specific for the capture of active NE in sputum and Bronchoalveolar Lavage (BAL) in patients with COPD. The objective of this study was to clinically validate ProteaseTag™ Active NE Ultra Immunoassay for the detection of NE in sputum from COPD patients. 20 matched sputum sol samples were collected from 10 COPD patients (M=6, F=4; 73 ± 6 years) during stable and exacerbation phases. Samples were assayed for NE activity utilising both ProteaseTag™ Active NE Ultra Immunoassay and a fluorogenic substrate-based kinetic activity assay. Both assays detected elevated levels of NE in the majority of patients (n=7) during an exacerbation (mean=217.2 μg/ml ±296.6) compared to their stable phase (mean=92.37 μg/ml ±259.8). However, statistical analysis did not show this difference to be significant (p=0.07, ProteaseTag™ Active NE Ultra Immunoassay; p=0.06 kinetic assay), most likely due to the low study number. A highly significant correlation was found between the 2 assay types (p≤0.0001, r=0.996). NE as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE Immunoassay specifically measures only active NE in clinical samples, is quick and easy to use (< 3 hours) and has no dependency on a kinetic readout. ProteaseTag™ technology is currently being transferred to a lateral flow device for use at Point of Care.