908 resultados para Nutrient availability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A micropaleontological study of planktonic assemblages on the partially laminated sapropel S5 (late Pleistocene, marine isotope stage (MIS) 5e) was performed in two piston cores from Urania Basin area (eastern Mediterranean, west of Crete): UM94PC16 and UM94PC31 recovered during a PALEOFLUX Project Cruise. The abundance of Florisphaera profunda indicates the development of a deep chlorophyll maximum (DCM) before the anoxic condition at bottom were established, whereas patterns of upper photic zone coccoliths suggest extreme oligotrophy in surface water. The short appearance of Globorotalia scitula and the presence of Globigerinoides ruber in the lower part of sapropel testify to a thermal stratification, also recorded by changes in primary producers. During G. scitula occurrence, diatoms, mainly represented by Pseudosolenia calcar-avis, appear and bloom because of their capability in using nutrients from DCM. Scanning electron microscope analyses performed on selected intervals from UM94PC16 show that the sapropel is organized in microlaminae mostly composed by siliceous microfossils. In particular, sapropel S5 could be related to an enhanced nutrient availability in the lower-middle part of the photic zone, stratified conditions, and a higher continental input.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (d13C) was temporarily reduced for ~100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum d18O values and reduction in test size-d13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a high resolution, multiproxy study of the relationship between pelagic and benthic environments of a coastal upwelling system in the subtropical NE Atlantic Ocean. Marine sediments corresponding to late MIS3 to the Holocene in the radiocarbon dated core GeoB7926, retrieved off Mauritania (21°N) were analysed to reconstruct productivity in surface waters and its linkage to deep waters during the last 35 ka BP. High latitude cold events and changes in atmospheric and oceanographic dynamics influenced upwelling intensity over this time period. Subsequently, this caused changes in primary productivity off this low-latitude coastal upwelling locality. The benthic foraminiferal fauna displays four main community shifts corresponding to fundamental climatic events, first of all during late MIS3 (35-28 ka BP), secondly from 28 to 19 ka BP (including Heinrich event 2 and the LGM), thirdly within Heinrich event 1, the Bølling Allerød and the Younger Dryas (18-11.5 ka BP) and finally during the Holocene (11.5-0 ka BP). In particular, strong pelagic-benthic coupling is apparent in MIS 3, as demonstrated by increased primary productivity, indicated by moderate DAR and the dominance of benthic foraminiferal species which prefer fresh phytodetritus. A decline in upwelling intensity and nutrient availability follows, which resulted in a proportionately larger amount of older, degraded matter, provoking a shift in the benthic foraminifera fauna composition. This rapid response of the benthic environment continues with a progressive increase in upwelling intensity due to sea level and oceanographic changes and according high surface production during the LGM. During Heinrich event 1 and the Younger Dryas, extreme levels of primary production actually hindered benthic environment through the development of low oxygen conditions. After this period, a final change in benthic foraminiferal community composition occurs which indicates a return to more oxygenated conditions during the Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reconstructing ocean temperature values is a major target in paleoceanography and climate research. However, most temperature proxies are organism-based and thus suffer from an "ecological bias". Multiproxy approaches can potentially overcome this bias but typically require more investment in time and resources, while being susceptible to errors induced by sample preparation steps necessary before analysis. Three lipid-based temperature proxies are widely used: UK'37 (based on long chain alkenones from phytoplanktonic haptophytes), TEX86 [based on glycerol dialkyl glycerol tetraethers (GDGTs) from pelagic archaea] and LDI (based on long chain diols from phytoplanktonic eustigmatophytes). So far, separate analytical methods, including gas chromatography (GC) and liquid chromatography (LC), have been used to determine these proxies. Here we present a sensitive method for determining all three in a single normal phase high performance LC-atmospheric pressure chemical ionization mass spectrometry (NP-HPLC-APCI-MS) analysis. Each of the long chain alkenones and long chain diols was separated and unambiguously identified from the accurate masses and characteristic fragmentation during multiple stage MS analysis (MS2). Comparison of conventional GC and HPLC-MS methods showed similar results for UK'37 and LDI, respectively, using diverse environmental samples and an Emiliania huxleyi culture. Including the three sea surface temperature (SST) proxies; the NP-HPLC-APCI-MS method in fact allows simultaneous determination of nine paleoenvironmental proxies. The extent to which the ecology of the source organisms (ecological bias) influences lipid composition and thereby the reconstructed temperature values was demonstrated by applying the new method to a sediment core from the Sea of Marmara, covering the last 21 kyr BP. Reconstructed SST values differed considerably between the proxies for the Last Glacial Maximum (LGM) and the period of Sapropel S1 formation at ca. 10 kyr BP, whereas the trends during the late Holocene were similar. Changes in the composition of alkenone-producing species at the transition from the LGM to the Bølling/Allerød (B/A) were inferred from unreasonably high UK'37-derived SST values (ca. 20 °C) during the LGM. We ascribe discrepancies between the reconstructed temperature records during S1 deposition to habitat change, e.g. a different depth due to changes in nutrient availability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calcareous nannofossils of the Cenomanian/Turonian boundary interval of Sites 1258 and 1260 (Ocean Drilling Program Leg 207) have been studied in order to understand the depositional environment during Oceanic Anoxic Event 2 (OAE2) in the equatorial Atlantic. Nannofossil assemblages show a significant change in relative abundances during the positive d13Corg excursion interval. The strong increase of the high productivity indicator Zeugrhabdotus erectus and the simultaneous decrease of the oligotrophic taxa Watznaueria barnesiae and Watznaueria fossacincta are indicative of enhanced fertility. The decrease of Eprolithus floralis may be attributed to the surface-water temperature increase during OAE2, which is, however, not very significant (~2-3 °C), as suggested by published TEX86 data. It seems more likely that the decrease of E. floralis during OAE2 was evoked by the breakdown of water-column stratification, indicating it as a deep-dwelling species, which prefers stratified waters with a deep nutricline. Prediscosphaera spp. and Retecapsa ficula, which show a significant increase in relative abundances during OAE2, seem to prefer eutrophic environments, while Amphizygus brooksii and Zeugrhabdotus noeliae lower surface-water fertility. Gartnerago segmentatum, Broinsonia spp., Watznaueria biporta, and Seribiscutum gaultensis decrease in abundances during OAE2. It is not clear if they preferred an oligotrophic environment, cooler surface-waters, or if they were inhabitants of the lower photic zone. Published geochemical data suggest that enhanced fertility and higher temperatures during OAE2 may have been caused by submarine volcanic activity through the release of biolimiting micronutrients into the ocean and carbon dioxide into the atmosphere. The breakdown of water-column stratification may have increased further nutrient availability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Paleocene/Eocene Thermal Maximum (PETM, ca. 55 Ma) is an abrupt, profound perturbation of climate and the carbon cycle associated with a massive injection of isotopically light carbon into the ocean-atmosphere system. As such, it provides an analogue for understanding the interplay between phytoplankton and climate under modern anthropogenic global-warming conditions. However, the accompanying enhanced dissolution poses uncertainty on the reconstruction of the affected ecology and productivity. We present a high-resolution record of bulk isotopes and nannofossil absolute abundance from Ocean Drilling Program (ODP) Site 1135 on the Kerguelen Plateau, Southern Indian Ocean to quantitatively constrain for the first time the influence of dissolution on paleoecological reconstruction. Our bulk-carbonate isotope record closely resembles that of the classic PETM site at ODP Site 690 on the opposite side of the Antarctic continent, and its correlation with those from ODP Sites 690, 1262 and 1263 records allows recognition of 14 precessional cycles upsection from the onset of the carbon isotopic excursion (CIE). This, together with a full range of common Discoasteraraneus and an abundance crossover between Fasciculithus and Zygrhablithusbijugatus, indicates the presence of the PETM at Site 1135, a poorly known record with calcareous fossils throughout the interval. The strong correlation between the absolute abundances of Chiasmolithus and coccolith assemblages reveals a dominant paleoecological signal in the poorly preserved fossil assemblages, while the influence of dissolution is only strong during the CIE. This suggests that r-selected taxa can preserve faithful ecological information even in the severely-altered assemblages studied here, and therefore provide a strong case for the application of nannofossils to paleoecological studies in better-preserved PETM sections. The inferred nannoplankton productivity drops abruptly at the CIE onset, but rapidly increases after the CIE peak, both of which may be driven by nutrient availability related to ocean stratification and vertical mixing due to changed sea-surface temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short-lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2-10 °C for 2-14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week-long extreme winter warming events - using infrared heating lamps and soil warming cables - for 3 consecutive years in a sub-Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11-75% and 52-95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis-idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long-term summer warming simulations and the 'greening' seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed palynological studies in the northeast (NE) Pacific, Strait of Georgia (BC, Canada), southeast (SE) Pacific and northwest Pacific (Dongdo Bay, South Korea) resulted in the recognition of the new dinoflagellate cyst species Selenopemphix undulata sp. nov. This species is restricted to cool temperate to sub-polar climate zones, where it is found in highest relative abundances in highly productive non- to reduced upwelling regions with an annual mean sea-surface temperature (aSST) below 16 °C and an annual mean sea-surface salinity (aSSS) between 20 and 35 psu. Those observations are in agreement with the late Quaternary fossil records from Santa Barbara Basin (ODP 893; 34°N) and offshore Chile (ODP 1233; 41°S), where this species thrived during the last glacial. This period was characterised by high nutrient availability and the absence of species favouring upwelling conditions. The indirect dependence of S. undulata sp. nov. abundances on nutrient availability during reduced or non-upwelling periods is expressed by the synchronous fluctuations with diatom abundances, since the distribution and growth rates of the latter are directly related with the availability of macronutrients in the surface waters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated above- and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid-July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using principal component analysis and cyst diversity and equity trends, we can recognize four distinct dinoflagellate cyst (dinocyst) assemblages from four Rupelian (Early Oligocene) cores in the Mainz Embayment of the northern Rhine Graben (SW Germany). These assemblages are the Spiniferites ramosus (PC1), Thalassiphora pelagica (PC2), Homotryblium tenuispinosum (PC3), and Vozzhennikovia spinula (PC4) assemblages. The four cores provide an onshore-offshore transect in the Mainz Embayment. The H. tenuispinosum assemblage shows high factor loadings in proximal to intermediate cores, which is interpreted to reflect temporary high-salinity conditions. Mean dinocyst diversity and equity increase with distance from the Mid-Rupelian shoreline, indicating increasingly stable paleoenvironmental conditions towards the center of the Mainz Embayment. Within individual cores, changes in dinocyst assemblages through time are related to paleoenvironmental and paleoclimatological changes. The three proximal to intermediate cores show dominance of the H. tenuispinosum assemblage repeatedly alternating with high factor loadings of the T. pelagica assemblage. In both cases, dinocyst diversity and equity tend to be reduced. Highest factor loadings of the S. ramosus assemblage occur in intervals where neither of the above assemblages is dominant and tend to coincide with dinocyst diversity and equity maxima. We interpret this distribution pattern to denote different paleoceanographic conditions, reflecting drier and more humid phases in the Early Oligocene of Central Europe. During relatively dry periods, increased salinity conditions prevailed in proximal to intermediate settings of the Mainz Embayment, as reflected by the dominance of the H. tenuispinosum assemblage. During more humid periods, increased runoff led to higher nutrient availability and the formation of a pycnocline separating slightly less saline surface waters from higher saline deeper waters, thus impeding vertical circulation. These environmental conditions are documented in high loadings of the T. pelagica assemblage which is indicative of increased eutrophication and/or oxygen-depleted bottom waters. Transitions between drier and more humid periods, i.e. episodes of normal marine conditions, are characterized by high loadings predominantly of the S. ramosus assemblage as well as increased dinocyst diversity and equity values. We propose that the alternations between drier and more humid phases may be related to variations in the ocean-atmosphere moisture flux from the North Atlantic into Central Europe bearing a high-latitude climate signal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on data obtained at three stations in coastal waters of the Black Sea off Sevastopol in 2000 and 2001, we present seasonal dynamics of the carbon to chlorophyll a ratio in nano- and microphy-toplankton. This parameter varied approximately tenfold throughout the year. Its maximum values (442-500) were obtained in summer (July), when Pyrrophyta dominated in phytoplankton. Minimum values (36-56) were observed in winter (December),when diatomaceous species predominated. We derive a regression relating the carbon to chlorophyll a ratio to proportion of Pyrrophyta in total phytoplankton biomass, doing so separately for warm and cold seasons. Regression equations demonstrate coupled action of irradiance, temperature, and nutrient availability on the carbon to chlorophyll a ratio. For Pyrrophyta phytoplankton assemblage R**2 = 0.95, and for diatomaceous one R**2 = 0.87.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reconstruction of ocean history employs a large variety of methods with origins in the biological, chemical, and physical sciences, and uses modern statistical techniques for the interpretation of extensive and complex data sets. Various sediment properties deliver useful information for reconstructing environmental parameters. Those properties that have a close relationship to environmental parameters are called ''proxy variables'' (''proxies'' for short). Proxies are measurable descriptors for desired (but unobservable) variables. Surface water temperature is probably the most important parameter for describing the conditions of past oceans and is crucial for climate modelling. Proxies for temperature are: abundance of microfossils dwelling in surface waters, oxygen isotope composition of planktic foraminifers, the ratio of magnesium or strontium to calcium in calcareous shells or the ratio of certain organic molecules (e.g. alkenones produced by coccolithophorids). Surface water salinity, which is important in modelling of ocean circulation, is much more difficult to reconstruct. At present there is no established method for a direct determination of this parameter. Measurements associated with the paleochemistry of bottom waters to reconstruct bottom water age and flow are made on benthic foraminifers, ostracodes, and deep-sea corals. Important geochemical tracers are d13C and Cd/Ca ratios. When using benthic foraminifers, knowledge of the sediment depth habitat of species is crucial. Reconstructions of productivity patterns are of great interest because of important links to current patterns, mixing of water masses, wind, the global carbon cycle, and biogeography. Productivity is reflected in the flux of carbon into the sediment. There are a number of fluxes other than those of organic carbon that can be useful in assessing productivity fluctuations. Among others, carbonate and opal flux have been used, as well as particulate barite. Furthermore, microfossil assemblages contain clues to the intensity of production as some species occur preferentially in high-productivity regions while others avoid these. One marker for the fertility of sub-surface waters (that is, nutrient availability) is the carbon isotope ratio within that water (13C/12C, expressed as d13C). Carbon isotope ratios in today's ocean are negatively correlated with nitrate and phosphate contents. Another tracer of phosphate content in ocean waters is the Cd/Ca ratio. The correlation between this ratio and phosphate concentrations is quite well documented. A rather new development to obtain clues on ocean fertility (nitrate utilization) is the analysis of the 15N/14N ratio in organic matter. The fractionation dynamics are analogous to those of carbon isotopes. These various ratios are captured within the organisms growing within the tagged water. A number of reconstructions of the partial pressure of CO2 have been attempted using d13C differences between planktic and benthic foraminifers and d13C values of bulk organic material or individual organic components. To define the carbon system in sea water, two elements of the system have to be known in addition to temperature. These can be any combination of total CO2 , alkalinity, or pH. To reconstruct pH, the boron isotope composition of carbonates has been used. Ba patterns have been used to infer the distribution of alkalinity in past oceans. Information relating to atmospheric circulationand climate is transported to the ocean by wind or rivers, in the form of minerals or as plant andanimal remains. The most useful tracers in this respect are silt-sized particles and pollen.