964 resultados para Number theory
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Lu à l'Académie Royale des Sciences, le 15 juin 1825"--P. 1.
Resumo:
1. Principes.--2. Racines des équations.--3. Grandeurs algébriques.
Resumo:
The Cunningham project seeks to factor numbers of the form bn±1 with b = 2, 3, . . . small. One of the most useful techniques is Aurifeuillian Factorization whereby such a number is partially factored by replacing bn by a polynomial in such a way that polynomial factorization is possible. For example, by substituting y = 2k into the polynomial factorization (2y2)2+1 = (2y2−2y+1)(2y2+2y+1) we can partially factor 24k+2+1. In 1962 Schinzel gave a list of such identities that have proved useful in the Cunningham project; we believe that Schinzel identified all numbers that can be factored by such identities and we prove this if one accepts our definition of what “such an identity” is. We then develop our theme to similarly factor f(bn) for any given polynomial f, using deep results of Faltings from algebraic geometry and Fried from the classification of finite simple groups.
Resumo:
This correspondence considers block detection for blind wireless digital transmission. At high signal-to-noise ratio (SNR), block detection errors are primarily due to the received sequence having multiple possible decoded sequences with the same likelihood. We derive analytic expressions for the probability of detection ambiguity written in terms of a Dedekind zeta function, in the zero noise case with large constellations. Expressions are also provided for finite constellations, which can be evaluated efficiently, independent of the block length. Simulations demonstrate that the analytically derived error floors exist at high SNR.
Resumo:
∗ This research is partially supported by the Bulgarian National Science Fund under contract MM-403/9
Resumo:
The paper introduces a method for dependencies discovery during human-machine interaction. It is based on an analysis of numerical data sets in knowledge-poor environments. The driven procedures are independent and they interact on a competitive principle. The research focuses on seven of them. The application is in Number Theory.
Resumo:
There are applied power mappings in algebras with logarithms induced by a given linear operator D in order to study particular properties of powers of logarithms. Main results of this paper will be concerned with the case when an algebra under consideration is commutative and has a unit and the operator D satisfies the Leibniz condition, i.e. D(xy) = xDy + yDx for x, y ∈ dom D. Note that in the Number Theory there are well-known several formulae expressed by means of some combinations of powers of logarithmic and antilogarithmic mappings or powers of logarithms and antilogarithms (cf. for instance, the survey of Schinzel S[1].
Resumo:
Бойко Бл. Банчев - Знае се, че рационалните числа образуват интересни и богати на изчислителни възможности структури като редици на Фарей (Феъри) и безкрайни дървета. Малко внимание се обръща на по-общо, систематично излагане на основните свойства на дробите като множество. Понятия биват въвеждани без обосноваване, някои доказателства са ненужно изкуствени, а почти винаги и едните, и другите като че биват отнесени към една или друга особена структура, вместо към множеството на дробите изобщо. Изненадващо е, че някои същностни твърдения изглежда дори не са формулирани в литературата по теория на числата. Тази статия има за цел да подобри състоянието на нещата в това отношение, като предлага общо, подходящо подредено изложение на понятия и свързани с тях твърдения. Като допълнение са представени бележки върху пораждането на множеството от всички дроби – откритие значително по-старо, отколкото е прието да се смята.
Resumo:
AMS subject classification: 90B80.