970 resultados para Nuclear engineering
Resumo:
A parallel genetic algorithm (PGA) is proposed for the solution of two-dimensional inverse heat conduction problems involving unknown thermophysical material properties. Experimental results show that the proposed PGA is a feasible and effective optimization tool for inverse heat conduction problems
Resumo:
At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges
Resumo:
The electric car, the all electric aircraft and requirements for renewable energy are prime examples of potential technologies needing to be addressed in the world problem of global warming/carbon emission etc. Power electronics are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper presents a 'virtual' design methodology together with theoretical and experimental results that demonstrate enhanced product design with improved reliability, performance and cost value within competitive schemes.
Resumo:
This presentation discusses latest developments in SiP technology and the challenges for design in terms of manufacture and reliability. It presents results from a UK government funded project that aims to develop modelling techniques that will assess the thermo-mechanical reliability of SiP structures such as (i) stacked die, (ii) side-by-side dies and (iii) embedded die. Finite element analysis coupled with numerical optimisation and uncertainty analysis is used is used to model the reliability of a particular package design. In particular, the damage (energy density) in the lead free solder interconnects under accelerated temperature cycling is predicted and used to observe the fatigue life-time. Warpage of the structure is also investigated
Resumo:
This paper discusses a reliability based optimisation modelling approach demonstrated for the design of a SiP structure integrated by stacking dies one upon the other. In this investigation the focus is on the strategy for handling the uncertainties in the package design inputs and their implementation into the design optimisation modelling framework. The analysis of fhermo-mechanical behaviour of the package is utilised to predict the fatigue life-time of the lead-free board level solder interconnects and warpage of the package under thermal cycling. The SiP characterisation is obtained through the exploitation of Reduced Order Models (ROM) constructed using high fidelity analysis and Design of Experiments (DoE) methods. The design task is to identify the optimal SiP design specification by varying several package input parameters so that a specified target reliability of the solder joints is achieved and in the same time design requirements and package performance criteria are met
Resumo:
With the growth in computing power, and advances in numerical methods for the solution of partial differential equations, modeling technologies based around computational fluid dynamics, finite element analysis and optimisation are now being widely used by researchers and industry. Polymer and adhesive materials are now being widely used in electronic and photonic devices. This paper will illustrate the use of modeling tools to predict the behaviour of these materials from product assembly to its performance and reliability.
Resumo:
This paper evaluates the shearing behavior of ball grid array (BGA) solder joints on Au/Ni/Cu pads of FR4 substrates after multiple reflow soldering. A new Pb-free solder, Sn–3Ag–0.5Cu–8In (SACI), has been compared with Sn–3Ag–0.5Cu (SAC) and Sn–37Pb (SP) solders, in terms of fracture surfaces, shearing forces and microstructures. Three failure modes, ball cut, a combination of solder shear and solder/pad bond separation, and pad lift, are assessed for the different solders and reflow cycles. It is found that the shearing forces of the SP and SAC solder joints tend to increase slightly with an increase in the number of reflow cycles due to diffusion-induced solid solution strengthening of the bulk solder and augmentation of the shearing area. However, the shearing forces of the SACI solder joints decrease slightly after four cycles of reflow, which is ascribed to the thermal degradation of both the solder/intermetallic compound (IMC) and IMC/Ni interfaces. The SACI solder joints yield the highest strengths, whereas the SP solder joints give the smallest values, irrespective of the number of reflow cycles. Thickening of the interfacial IMC layer and coarsening of the dispersing IMC particles within the bulk solders were also observed. Nevertheless, the variation of shearing forces and IMC thickness with different numbers of reflow cycles was not so significant since the Ni under layer acted as an effective diffusion barrier. In addition, the initially-formed IMC layer retarded the further extensive dissolution of the pad material and its interaction with the solder
Resumo:
The thermal stress in a Sn3.5Ag1Cu half-bump solder joint under a 3.82×108 A/m2 current stressing was analyzed using a coupled-field simulation. Substantial thermal stress accumulated around the Al-to-solder interface, especially in the Ni+(Ni,Cu)3Sn4 layer, where a maximal stress of 138 MPa was identified. The stress gradient in the Ni layer was about 1.67×1013 Pa/m, resulting in a stress migration force of 1.82×10-16 N, which is comparable to the electromigration force, 2.82×10-16 N. Dissolution of the Ni+(Ni,Cu)3Sn4 layer, void formation with cracks at the anode side, and extrusions at the cathode side were observed
Resumo:
In this paper, a method for the integration of several numerical analytical techniques that are used in microsystems design and failure analysis is presented. The analytical techniques are categorized into four groups in the discussion, namely the high-fidelity analytical tools, i.e. finite element (FE) method, the fast analytical tools referring to reduced order modeling (ROM); the optimization tools, and probability based analytical tools. The characteristics of these four tools are investigated. The interactions between the four tools are discussed and a methodology for the coupling of these four tools is offered. This methodology consists of three stages, namely reduced order modeling, deterministic optimization and probabilistic optimization. Using this methodology, a case study for optimization of a solder joint is conducted. It is shown that these analysis techniques have mutual relationship of interaction and complementation. Synthetic application of these techniques can fully utilize the advantages of these techniques and satisfy various design requirements. The case study shows that the coupling method of different tools provided by this paper is effective and efficient and it is highly relevant in the design and reliability analysis of microsystems
Resumo:
The use of flexible substrates is growing in many applications such as computer peripherals, hand held devices, telecommunications, automotive, aerospace, etc. The drive to adopt flexible circuits is due to their ability to reduce size, weight, assembly time and cost of the final product.They also accommodate flexibility by allowing relative movement between component parts and provide a route for three dimensional packaging. This paper will describe some of the current research results from the Flex-No-Lead project, a European Commission sponsored research program. The principle aim of this project is to investigate the processing, performance, and reliability of flexible substrates when subjected to new environmentally friendly, lead-free soldering technologies. This paper will discuss the impact of specific design variables on performance and reliability. In particular the paper will focus on copper track designs, substrate material, dielectric material and solder-mask defined joints.
Resumo:
The use of flexible substrates is growing in many applications such as computer peripherals, hand held devices, telecommunications, automotive, aerospace, etc. The drive to adopt flexible circuits is due to their ability to reduce size, weight, assembly time and cost of final product. they also accommodate flexibility by allowing relative movement between component parts and provide a route for three dimensional packaging. This paper will describe some of the current research results from the Flex-No-Lead project, European Commission sponsored programme. The principle aim of this project is to investigate the processing, performance and reliability of flexible substrates when subjected to new environmentally friendly, lead-free soldering technologies. This paper will discuss the impact of specific design variables on performance and reliability. In particular the paper will focus on copper track designs, substrate material, dielectric material and solder mask defined joints
Resumo:
This paper investigated the thermal design of the light emitting diode (LED)onto the board and its packaging. The LED was a 6-lead MultiLED with three chips designed for LCD backlighting and other lighting purposes. A 3D finite element model of this LED was built up and thermal analysis was carried out using the multi physics software package PHYSICA. The modeling results were presented as temperature distributions in each LED, and the predicted junction temperature was used for thermal resistance calculation. The results for the board structure indicated that (1) removing the foil attach decreased the thermal resistance, (2) Increasing the copper foil thickness reduced the thermal resistance. package design indicated that the SMT designed LED with integrated slug gave lower thermal resistance. Pb-free solder material gave lower thermal resistance and junction temperature when compared with conductive adhesive
Resumo:
Summary form only given. Currently the vast majority of adhesive materials in electronic products are bonded using convection heating or infra-red as well as UV-curing. These thermal processing steps can take several hours to perform, slowing throughput and contributing a significant portion of the cost of manufacturing. With the demand for lighter, faster, and smaller electronic devices, there is a need for innovative material processing techniques and control methodologies. The increasing demand for smaller and cheaper devices pose engineering challenges in designing a curing systems that minimize the time required between the curing of devices in a production line, allowing access to the components during curing for alignment and testing. Microwave radiation exhibits several favorable characteristics and over the past few years has attracted increased academic and industrial attention as an alternative solution to curing of flip-chip underfills, bumps, glob top and potting cure, structural bonding, die attach, wafer processing, opto-electronics assembly as well as RF-ID tag bonding. Microwave energy fundamentally accelerates the cure kinetics of polymer adhesives. It provides a route to focus heat into the polymer materials penetrating the substrates that typically remain transparent. Therefore microwave energy can be used to minimise the temperature increase in the surrounding materials. The short path between the energy source and the cured material ensures a rapid heating rate and an overall low thermal budget. In this keynote talk, we will review the principles of microwave curing of materials for high density packing. Emphasis will be placed on recent advances within ongoing research in the UK on the realization of "open-oven" cavities, tailored to address existing challenges. Open-ovens do not require positioning of the device into the cavity through a movable door, hence being more suitable for fully automated processing. Further potential advantages of op- - en-oven curing include the possibility for simultaneous fine placement and curing of the device into a larger assembly. These capabilities promise productivity gains by combining assembly, placement and bonding into a single processing step. Moreover, the proposed design allows for selective heating within a large substrate, which can be useful particularly when the latter includes parts sensitive to increased temperatures.
Resumo:
The effect of current stressing on the reliability of 63Sn37Pb solder joints with Cu pads was investigated at temperatures of −5 °C and 125 °C up to 600 h. The samples were stressed with 3 A current (6.0 × 102 A/cm2 in the solder joint with diameter of 800 μm and 1.7 × 104 A/cm2 in the Cu trace with cross section area of 35 × 500 μm). The temperatures of the samples and interfacial reaction within the solder joints were examined. The microstructural change of the solder joints aged at 125 °C without current flow was also evaluated for comparison. It was confirmed that the current flow could cause the temperature of solder joints to rise rapidly and remarkably due to accumulation of massive Joule heat generated by the Cu trace. The solder joints stressed at 125 °C with 3 A current had an extensive growth of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC) at both top and bottom solder-to-pad interfaces. It was a direct result of accelerated aging rather than an electromigration or thermomigration effect in this experiment. The kinetic is believed to be bulk diffusion controlled solid-state reaction, irrespective of the electron flow direction. When stressed at −5 °C with 3 A current, no significant change in microstructure and composition of the solder joints had occurred due to a very low diffusivity of the atoms as most Joule heat was eliminated at low temperature. The IMC evolution of the solder joints aged at 125 °C exhibited a subparabolic growth behavior, which is presumed to be a combined mechanism of grain boundary diffusion and bulk diffusion. This is mainly ascribed to the retardant effect against the diffusion course by the sufficiently thick IMC layer that was initially formed during the reflow soldering.
Resumo:
The latest advances in multi-physics modelling both using high fidelity techniques and reduced order and behavioural models will be discussed. Particular focus will be given to the application and validation of these techniques for modelling the fabrication, packaging and subsequent reliability of micro-systems based components. The paper will discuss results from a number of research projects with particular emphasis on the techniques being developed in a major UK Goverment funded project - 3D-MINTEGRATION (www.3d-mintegration.com).