978 resultados para Northern Hemisphere
Resumo:
Recently, large-scale changes in the biogeography of calanoid copepod crustaceans have been detected in the northeastern North Atlantic Ocean and adjacent seas. Strong biogeographical shifts in all copepod assemblages were found with a northward extension of more than ° in latitude of warm-water species associated with a decrease in the number of colder-water species. These changes were attributed to regional increase in sea surface temperature. Here, we have extended these studies to examine long-term changes in phytoplankton, zooplankton and salmon in relation to hydro-meteorological forcing in the northeast Atlantic Ocean and adjacent seas. We found highly significant relationships between (1) long-term changes in all three trophic levels, (2) sea surface temperature in the northeastern Atlantic, (3) Northern Hemisphere temperature and (4) the North Atlantic Oscillation. The similarities detected between plankton, salmon, temperature and hydro-climatic parameters are also seen in their cyclical variability and in a stepwise shift that started after a pronounced increase in Northern Hemisphere Temperature anomalies at the end of the 1970s. All biological variables show a pronounced change which started after circa 1982 for euphausiids (decline), 1984 for the total abundance of small copepods (increase), 1986 for phytoplankton biomass (increase) and Calanus finmarchicus (decrease) and 1988 for salmon (decrease). This cascade of biological events led to an exceptional period, which is identified after 1986 to present and followed another shift in large-scale hydro-climatic variables and sea surface temperature. This regional temperature increase therefore appears to be an important parameter that is at present governing the dynamic equilibrium of northeast Atlantic pelagic ecosystems with possible consequences for biogeochemical processes and fisheries.
Resumo:
This paper reviews current literature on the projected effects of climate change on marine fish and shellfish, their fisheries, and fishery-dependent communities throughout the northern hemisphere. The review addresses the following issues: (i) expected impacts on ecosystem productivity and habitat quantity and quality; (ii) impacts of changes in production and habitat on marine fish and shellfish species including effects on the community species composition, spatial distributions, interactions, and vital rates of fish and shellfish; (iii) impacts on fisheries and their associatedcommunities; (iv) implications for food security and associated changes; and (v) uncertainty andmodelling skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite of linked processes. Integrated interdisciplinary research teams are forming in many regions to project these complex responses. National and international marine research organizations serve a key role in the coordination and integration of research to accelerate the production of projections of the effects of climate change on marine ecosystems and to move towards a future where relative impacts by region could be compared on a hemispheric or global level. Eight research foci were identified that will improve the projections of climate impacts on fish, fisheries, and fishery-dependent communities.
Resumo:
Benthic biomass size spectra (BSS) and normalized biomass size spectra were constructed, and benthic secondary production was estimated by a size spectrum equation in the shallow waters in the East China Sea, ranging latitudinally from 40A degrees N to 29A degrees N. The BSS patterns were bimodal, two biomass peaks corresponding to meiofauna and macrofauna, respectively, separated by a trough of low biomass at 8-256 mu g individual dry weight which varied in position with median sediment particle size. The BSS also displayed bimodality within meiofauna size ranges, which in most stations was due to the relative proportions of nematodes and other meiofauna taxa. Re-analysis of data from sites in the UK, South Africa, and Antarctic showed a similar bimodality in the adult species body size distribution within the meiofauna size range. Macrofaunal production estimated by the size spectrum equation was very similar to the results of Brey90 empirical equation. However, these production values were much lower than those calculated by Brey01. Different individual dry-to-wet conversion ratios, temperature deviation, and macrofauna taxonomic composition might be responsible for the between-model differences. The macrofaunal P/B ratios calculated by this equation ranged from 0.3 to 3.4 which were in accordance with values from Northern Hemisphere mid-latitudes. Meiofaunal production estimates will need further empirical support.
Resumo:
The abundance of wild salmon (Salmo salar) in the North Atlantic has declined markedly since the late 1980s as a result of increased marine mortality that coincided with a marked rise in sea temperature in oceanic foraging areas. There is substantial evidence to show that temperature governs the growth, survival, and maturation of salmon during their marine migrations through either direct or indirect effects. In an earlier study (2003), long-term changes in three trophic levels (salmon, zooplankton, and phytoplankton) were shown to be correlated significantly with sea surface temperature (SST) and northern hemisphere temperature (NHT). A sequence of trophic changes ending with a stepwise decline in the total nominal catch of North Atlantic salmon (regime shift in ∼1986/1987) was superimposed on a trend to a warmer dynamic regime. Here, the earlier study is updated with catch and abundance data to 2010, confirming earlier results and detecting a new abrupt shift in ∼1996/1997. Although correlations between changes in salmon, plankton, and temperature are reinforced, the significance of the correlations is reduced because the temporal autocorrelation of time-series substantially increased due to a monotonic trend in the time-series, probably related to global warming. This effect may complicate future detection of effects of climate change on natural systems.
Resumo:
Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.
Resumo:
Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (~60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries.
Resumo:
Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.
Resumo:
The Northern Hemisphere has been warmer since 1980 than at any other time during the last 2000 years. The observed increase in temperature has been generally higher in northern than in southern European seas, and higher in enclosed than in open seas. Although European marine ecosystems are influenced by many other factors, such as nutrient enrichment and overfishing, every region has shown at least some changes that were most likely attributable to recent climate change. It is expected that within open systems there will generally be (further) northward movement of species, leading to a switch from polar to more temperate species in the northern seas such as the Arctic, Barents Sea and the Nordic Seas, and subtropical species moving northward to temperate regions such as the Iberian upwelling margin. For seas that are highly influenced by river runoff, such as the Baltic Sea, an increase in freshwater due to enhanced rainfall will lead to a shift from marine to more brackish and even freshwater species. If semi-enclosed systems such as the Mediterranean and the Black Sea lose their endemic species, the associated niches will probably be filled by species originating from adjacent waters and, possibly, with species transported from one region to another via ballast water and the Suez Canal. A better understanding of potential climate change impacts (scenarios) at both regional and local levels, the development of improved methods to quantify the uncertainty of climate change projections, the construction of usable climate change indicators, and an improvement of the interface between science and policy formulation in terms of risk assessment will be essential to formulate and inform better adaptive strategies to address the inevitable consequences of climate change.
Resumo:
Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites – the Coastal Zone Color Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998-2010). Due to the large gap between the two satellite eras and differences in sensor characteristics, comparison of the absolute values retrieved from the two instruments remains challenging. Using a unique in situ ocean colour dataset that spans more than half a century, the two satellite-derived chlorophyll-a (Chl-a) eras are linked to assess concurrent changes in phytoplankton variability and bloom timing over the Northeast Atlantic Ocean and North Sea. Results from this unique re-analysis reflect a clear increasing pattern of Chl-a, a merging of the two seasonal phytoplankton blooms producing a longer growing season and higher seasonal biomass, since the mid-1980s. The broader climate plays a key role in Chl-a variability as the ocean colour anomalies parallel the oscillations of the Northern Hemisphere Temperature (NHT) since 1948.
Resumo:
Latitudinal gradients in diversity are among the most striking features in ecology. For terrestrial species, climate (i.e. temperature and precipitation) is believed to exert a strong influence on the geographical distributions of diversity through its effects on energy availability. Here, we provide the first global description of geographical variation in the diversity of marine copepods, a key trophic link between phytoplankton and fish, in relation to environmental variables. We found a polar-tropical difference in copepod diversity in the Northern Hemisphere where diversity peaked at subtropical latitudes. In the Southern Hemisphere, diversity showed a tropical plateau into the temperate regions. This asymmetry around the Equator may be explained by climatic conditions, in particular the influence of the Inter-Tropical Convergence Zone, prevailing mainly in the northern tropical region. Ocean temperature was the most important explanatory factor among all environmental variables tested, accounting for 54 per cent of the variation in diversity. Given the strong positive correlation between diversity and temperature, local copepod diversity, especially in extra-tropical regions, is likely to increase with climate change as their large-scale distributions respond to climate warming.
Resumo:
The social, economic, and ecological consequences of projected climate change on fish and fisheries are issues of global concern. In 2012, the International Council for the Exploration of the Sea (ICES) and the North Pacific Marine Science Organization (PICES) established a Strategic Initiative on Climate Change Effects on Marine Ecosystems (SICCME) to synthesize and to promote innovative, credible, and objective science-based advice on the impacts of climate change on marine ecosystems in the Northern Hemisphere. SICCME takes advantage of the unique and complementary strengths of the two organizations to develop a research initiative that focuses on their shared interests. A phased implementation will ensure that SICCME will be responsive to a rapidly evolving research area while delivering ongoing syntheses of existing knowledge, thereby advancing new science and methodologies and communicating new insights at each phase.
Resumo:
There is ongoing debate as to whether the oligotrophic ocean is predominantly net autotrophic and acts as a CO2 sink, or net heterotrophic and therefore acts as a CO2 source to the atmosphere. This quantification is challenging, both spatially and temporally, due to the sparseness of measurements. There has been a concerted effort to derive accurate estimates of phytoplankton photosynthesis and primary production from satellite data to fill these gaps; however there have been few satellite estimates of net community production (NCP). In this paper, we compare a number of empirical approaches to estimate NCP from satellite data with in vitro measurements of changes in dissolved O2 concentration at 295 stations in the N and S Atlantic Ocean (including the Antarctic), Greenland and Mediterranean Seas. Algorithms based on power laws between NCP and particulate organic carbon production (POC) derived from 14C uptake tend to overestimate NCP at negative values and underestimate at positive values. An algorithm that includes sea surface temperature (SST) in the power function of NCP and 14C POC has the lowest bias and root-mean square error compared with in vitro measured NCP and is the most accurate algorithm for the Atlantic Ocean. Nearly a 13 year time series of NCP was generated using this algorithm with SeaWiFS data to assess changes over time in different regions and in relation to climate variability. The North Atlantic subtropical and tropical Gyres (NATL) were predominantly net autotrophic from 1998 to 2010 except for boreal autumn/winter, suggesting that the northern hemisphere has remained a net sink for CO2 during this period. The South Atlantic subtropical Gyre (SATL) fluctuated from being net autotrophic in austral spring-summer, to net heterotrophic in austral autumn–winter. Recent decadal trends suggest that the SATL is becoming more of a CO2 source. Over the Atlantic basin, the percentage of satellite pixels with negative NCP was 27%, with the largest contributions from the NATL and SATL during boreal and austral autumn–winter, respectively. Variations in NCP in the northern and southern hemispheres were correlated with climate indices. Negative correlations between NCP and the multivariate ENSO index (MEI) occurred in the SATL, which explained up to 60% of the variability in NCP. Similarly there was a negative correlation between NCP and the North Atlantic Oscillation (NAO) in the Southern Sub-Tropical Convergence Zone (SSTC),which explained 90% of the variability. There were also positive correlations with NAO in the Canary Current Coastal Upwelling (CNRY) and Western Tropical Atlantic (WTRA)which explained 80% and 60% of the variability in each province, respectively. MEI and NAO seem to play a role in modifying phases of net autotrophy and heterotrophy in the Atlantic Ocean.
Resumo:
The ascidian Corella eumyota, originally from the Southern Hemisphere, was first reported in the Northern Hemisphere in Brittany, France, in 2002. Since then, it has been recorded in Spain, Ireland, the south coast of England and South Wales. Most European records to date have been from artificial habitats such as marinas. In Plymouth, England, C. eumyota was first found in two marinas in 2005 but individuals were soon also detected in small numbers on nearby shores. Shore surveys in March and August of 2008 indicated that C. eumyota has established reproductive populations on natural and semi-natural shores of Plymouth Sound and the adjacent coastline, largely restricted to relatively sheltered sites in the lower reaches of estuaries. At these sites it is generally the most abundant non-colonial ascidian. The species clearly has the capacity to become a significant component of the biota of sheltered shores in the Northern Hemisphere.
Resumo:
Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.
Resumo:
The University of Waikato, Hamilton, New Zealand and The Queen's University of Belfast, Northern Ireland radiocarbon dating laboratories have undertaken a series of high-precision measurements on decadal samples of dendrochronologically dated oak (Quercus petraea) from Great Britain and cedar (Libocedrus bidwillii) and silver pine (Lagarostrobos colensoi) from New Zealand. The results show an average hemispheric offset over the 900 yr of measurement of 40±13 yr. This value is not constant but varies with a periodicity of about 130 yr. The Northern Hemisphere measurements confirm the validity of the Pearson et al. (1986) calibration dataset.