985 resultados para Nitrate reductase enzyme
Resumo:
Treatment with diallyl disulfide, a constituent of garlic oil, irreversibly inactivated microsomal and a soluble 50 kDa form of HMG-CoA reductase. No radioactivity was found to be protein-bound on treating the soluble enzyme with [35S]diallyl disulfide, indicating the absence of the mixed disulfide of the type allyl-S-S-protein. SDS-PAGE and Western blot analyses of the diallyl-disulfide-treated protein showed no traces of the dimer of the type protein-S-S-protein, but clearly indicated BME-reversible increased mobility, as expected of an intramolecular protein disulfide. The sulfhydryl groups, as measured by alkylation with iodo[2-14C]acetic acid, were found to decrease in the diallyl-disulfide-treated enzyme protein. Tryptic peptide analysis also gave support for the possible presence of disulfide-containing peptides in such a protein. It appears that diallyl disulfide inactivated HMG-CoA reductase by forming an internal protein disulfide that became inaccessible for reduction by DTT, and thereby retaining the inactive state of the enzyme.
Resumo:
A simple three step procedure was used to purify microsomal NADH-cytochrome b5 (ferricyanide) reductase to homogeneity from the higher plant C. roseus. The microsomal bound reductase was solubilized using zwitterionic detergent-CHAPS. The solubilized reductase was subjected to affinity chromatography on octylamino Sepharose 4B, blue 2-Sepharose CL-6B and NAD+-Agarose. The homogeneous enzyme has an apparent molecular weight of 33,000 as estimated by SDS-PAGE. The purified enzyme catalyzes the reduction of purified cytochrome b5 from C. roseus in the presence of NADH. The reductase also readily transfers electrons from NADH to ferricyanide (Km 56 μM), 2,6-dichlorophenolindophenol (Km 65 μM) and cytochrome Image via cytochrome b5 but not to menadione.
Resumo:
Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. (C) 2011 IUBMB mum Life, 63(1): 30-41,2011
Resumo:
On repeated thawing at room temperature of frozen preparations of heavy microsomes from rat livers, HMGCoA reductase activity was solubilized due to limited proteolysis. This soluble enzyme was partially purified by fractionation with ammonium sulfate and filtration on Sephacryl S-200 column. The active enzyme was coeluted with a major 92 kDa-protein and was identified as a 58kDa-protein after separation by SDS-PAGE and immunoblotting. Ethoxysilatrane, a hypocholesterolemic compound, which decreased the liver-microsomal activity of HMGCoA reductase on intra-peritonial treatment of animals, showed little effect on the enzyme activity with isolated microsomes or the 50kDa-soluble enzyme when added in the assay. But it was able to inhibit the activity of the soluble 58kDa-enzyme in a concentration-dependent, reversible manner. Cholesterol and an oxycholesterol were without effect whereas chlorophenoxyisobutyrate and ubiquinone showed small inhibition under these conditions. The extra region that links the active site domain (50kDa protein) to the membrane, present in the 58kDa-protein appears to be involved in mediating the inhibition by silatrane.
Resumo:
Lysine biosynthesis proceeds by the nucleotide-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) by dihydrodipicolinate reductase (DHDPR). The S. aureus DHDPR structure reveals different conformational states of this enzyme even in the absence of a substrate or nucleotide-cofactor. Despite lacking a conserved basic residue essential for NADPH interaction, S. aureus DHDPR differs from other homologues as NADPH is a more preferred co-factor than NADH. The structure provides a rationale-Lys35 compensates for the co-factor site mutation. These observations are significant for bi-ligand inhibitor design that relies on ligand-induced conformational changes as well as co-factor specificity for this important drug target. Structured summary of protein interactions: DHDPR binds to DHDPR by molecular sieving (View interaction). DHDPR binds to DHDPR by dynamic light scattering (View interaction). DHDPR binds to DHDPR by X-ray crystallography (View interaction). (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Objective: In this study, we report the role of miRNAs involved under nitrogen starvation from widely grown vegetable crop, French bean. In recent years, a great deal of attention has been paid to the elucidation of miRNAs involved in low nitrate stress. Methods: To identify miRNAs expressed under stress, cDNA libraries were analyzed. Results: We reported the nine potential miRNAs with 67 targets involved in nutrient transporters and other stress specific genes. Among the miRNA sequences obtained 6 sequences belong to miR172 family, one with miR169. RT-PCR analysis of expression of miR172 family was induced upon low nitrate stress while miR169 family was repressed. In addition, Pvu-SN7b and Pvu-miR16 may be new members of miRNA172 and miR169 families, respectively. Conclusion: The targets of Pvu-SN7b were major protein kinases, one among which is the Protein Kinase CK2. CK2 Kinase is found to involve in transcription-directed signaling, gene control and cell-cycle regulation. Other targets of Pvu-SN7b were involved in DNA-dependent transcription regulation, photo-periodism, calcium-mediated signaling. Pvu-miR16 targets Thymidine kinase, the key enzyme of deoxy-nucleotide synthesis. The cleavage of these targets affects cell proliferation there by affecting nodule formation. Pvu-miR8 inhibits translation of its target protein Pre-protein translocase, a membrane-bound protein transporter involved in trans-membrane protein transportation. Together these results denote the response and role of miRNAs to nitrate-limiting conditions in French bean.
Resumo:
Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Elevated homocysteine is associated with ischaemic heart disease (IHD). The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene results in reduced MTHFR enzyme activity and reduced methylation of homocysteine to methionine resulting in mild hyperhomocysteinaemia. Case-control association studies of the role of the C677T MTHFR polymorphism in IHD have produced conflicting results. We therefore used newly described family-based association tests to investigate the role of this polymorphism in IHD, in a well-defined population. Methods: A total of 352 individuals from 129 families (discordant sibships and parent-child trios) were recruited. Linkage disequilibrium between the polymorphism and IHD was tested for using the combined transmission disequilibrium test (TDT)/sib-TDT and pedigree disequilibrium test (PDT). Homocysteine levels were measured. Results: Both the TDT/sib-TDT and PDT analyses found a significantly reduced transmission of the T allele to affected individuals (P=0.016 and P=0.021). There was no significant difference in homocysteine levels between affected and unaffected siblings. TT homozygotes had mean homocysteine levels significantly higher than those of TC heterozygotes (P
Resumo:
BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR; EC 1.7.99.5) supplies the folate needed for the metabolism of homocysteine. A reduction in MTHFR activity, as occurs in the homozygous state for the 677C-->T (so-called thermolabile) enzyme variant (TT genotype), is associated with an increase in plasma total homocysteine (tHcy). OBJECTIVE: In vitro studies suggest that the reduced activity of thermolabile MTHFR is due to the inappropriate loss of its riboflavin cofactor. We investigated the hypothesis that MTHFR activity in the TT genotype group is particularly sensitive to riboflavin status. DESIGN: We studied tHcy and relevant B-vitamin status by MTHFR genotype in a cross-sectional study of 286 healthy subjects aged 19-63 y (median: 27 y). The effect of riboflavin status was examined by dividing the sample into tertiles of erythrocyte glutathionine reductase activation coefficient, a functional index of riboflavin status. RESULTS: Lower red blood cell folate (P = 0.0001) and higher tHcy (P = 0.0082) concentrations were found in the TT group than in the heterozygous (CT) or wild-type (CC) groups. However, these expected relations in the total sample were driven by the TT group with the lowest riboflavin status, whose mean tHcy concentration (18.09 micromol/L) was almost twice that of the CC or CT group. By contrast, adequate riboflavin status rendered the TT group neutral with respect to tHcy metabolism. CONCLUSIONS: The high tHcy concentration typically associated with homozygosity for the 677C-->T variant of MTHFR occurs only with poor riboflavin status. This may have important implications for governments considering new fortification policies aimed at the prevention of diseases for which this genotype is associated with increased risk.
Resumo:
In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Recessive congenital methemoglobinemia (RCM) is caused by a deficiency of reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. One of the original propositi with the type 1 disorder has now been traced. He was found to be a compound heterozygote harboring 2 previously undescribed mutations in exon 9, a point mutation Gly873Ala predicting a Gly291Asp substitution, and a 3-bp in-frame deletion of codon 255 (GAG), predicting loss of glutamic acid. A brother and a surviving sister are heterozygous; each bears one of the mutations. Thirty-three different mutations have now been recorded for RCM. The original authors' optimism that RCM would provide material for future genetic studies has been amply justified.
Resumo:
After thermal treatment of a mixture of glucose and glycine for 2 h at 125 degreesC, about 60% of the starting material was converted into nonsoluble, black pigments, whereas 40% of the mixture was still water-soluble. Dialysis of the latter fraction revealed 30.4% of low molecular weight compounds (LMWs; MW <10 000 De) and 10.0% high-molecular weight products [HMWs; MW greater than or equal to 10000 Dal. The water-soluble Maillard reaction products (MRPs) were separated by gel permeation chromatography and ultrafiltration, revealing that 60% of the water-soluble products of the total carbohydrate/amino acid mixture had MWs <1 000 Da and consisted mainly of non-coloured reaction products. MRPs with MWs between 1000 and 30000 Da were Found in comparatively low yields (about 1.3%). In contrast, about 31.1% of the MRPs exhibited MWs > 30000 Da, amongst which 14.5% showed MWs > 100000 Da, thus indicating an oligomerisation of LMWs to melanoidins under roasting conditions. To investigate the physiological effects of these MRPs, xenobiotic enzyme activities were analysed in intestinal Caco-2 cells. For Phase-I NADPH-cytochrome c-reductase, the activity in the presence of the LMW and HMW fraction was decreased by 13% and 22%: respectively. Phase-II glutathione-S-transferase activity decreased by 15% and 18%, respectively, after incubation with the LMW and the HMW fractions. Considering the different yields, 30% and 10%, respectively, of the LMW and the HMW fractions, the total amount of the LMW fraction present in the glucose-glycine mixture is more active in modulating three enzyme activities than that of the HMW fraction.
Resumo:
Enantioenriched thiosulfinates have been obtained by dioxygenase- and chloroperoxidase-catalysed oxidation of 1,2-disulfides and dimethyl sulfoxide reductase-catalysed deoxygenation.
Resumo:
Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r.
Resumo:
Nitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio (H) over right arrow (+)/2e(-) (n) for the coupled reaction of NADH oxidation by the quinone accepters. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q(1) gives the value of n = 4. Thermally induced deactivation of Complex I [1, 2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q(1)-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q(1)-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex 1 as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme.
Resumo:
BACKGROUND: The genetic variation which underlies the thermolability and low enzyme activity of 5,10-methylenetetrahydrofolate reductase (MTHFR; C677T) has been extensively studied in many populations, including the Irish population.
AIM: To describe the examination of the C677T substitution in two new control samples drawn from the Irish population.
METHODS: A collection of 487 serum samples was obtained through the blood transfusion services of both the Republic of Ireland and Northern Ireland and a further 115 samples from volunteers.
RESULTS: In both samples, the frequency of the thermolabile/low enzyme activity allele (T) was higher than that previously reported for the Irish population.
CONCLUSION: This finding thus supports the need for a greater use of internal control/family-based association studies, as opposed to the classic case control study design, when assessing the contribution of the MTHFR T allele to disease processes.