994 resultados para Nigella sativa L.
Resumo:
Although plant growth is often limited at high pH, little is known about root-induced changes in the rhizospheres of plants growing in alkaline soils. The effect of Mn deficiency in Rhodes grass (Chloris gayana cv. Pioneer) and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. Rhizosphere pH was measured quantitatively, with a micro pH electrode, and qualitatively, with an agar/pH indicator solution. Manganese deficiency in Rhodes grass increased root-induced acidification of the rhizosphere in a soil profile in which N was supplied entirely as NO3-. Rhizosphere pH in the Mn deficient plants was up to 1.22 pH units lower than that of the bulk soil, while only 0.90 to 0.62 pH units lower in plants supplied with adequate Mn. When soil N was supplied entirely as NO3-, rhizosphere acidification was more efficient in inoculated lucerne (1.75 pH unit decrease) than in non-inoculated lucerne (1.16 pH unit decrease). This difference in capacity to lower rhizosphere pH is attributable to the ability of the inoculated lucerne to fix atmospheric N2 rather than relying on the soil N (NO3 ) reserves as the non-inoculated plants. Rhizosphere acidification in both Rhodes grass and lucerne was greatest in the meristematic root zone and least in the maturation root zone.
Resumo:
The use of 'balanced' Ca, Mg, and K ratios, as prescribed by the basic cation saturation ratio (BCSR) concept, is still used by some private soil-testing laboratories for the interpretation of soil analytical data. This review aims to examine the suitability of the BCSR concept as a method for the interpretation of soil analytical data. According to the BCSR concept, maximum plant growth will be achieved only when the soils exchangeable Ca, Mg, and K concentrations are approximately 65 % Ca, 10 % Mg, and 5 % K (termed the ‘ideal soil). This ‘ideal soil was originally proposed by Firman Bear and co-workers in New Jersey (USA) during the 1940s as a method of reducing luxury K uptake by alfalfa (Medicago sativa L.). At about the same time, William Albrecht, working in Missouri (USA), concluded through his own investigations that plants require a soil with a high Ca saturation for optimal growth. Whilst it now appears that several of Albrecht’s experiments were fundamentally flawed, the BCSR (‘balanced soil) concept has been widely promoted, suggesting that the prescribed cationic ratios provide optimum chemical, physical, and biological soil properties. Our examination of data from numerous studies (particularly those of Albrecht and Bear, themselves) would suggest that, within the ranges commonly found in soils, the chemical, physical, and biological fertility of a soil is generally not influenced by the ratios of Ca, Mg, and K. The data do not support the claims of the BCSR, and continued promotion of the BCSR will result in the inefficient use of resources in agriculture and horticulture.
Resumo:
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-rone temperatures (RZTs): a constant 20 degreesC-RZT and a fluctuating ambient (A-) RZT from 23-40 degreesC, Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (g(s)), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio F-v/F-m than 20 degreesC-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although F-v/F-m did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (g(s) (sat)) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure, However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O-2 evolution (P-max), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P-max during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.
Resumo:
A field experiment compared two rice (Oryza sativa L.) cropping systems: paddy or raised beds with continuous furrow irrigation; and trialled four cultivars: Starbonnet, Lemont, Amaroo and Ceysvoni, and one test line YRL39; that may vary in adaptation to growth on raised beds. The grain yield of rice ranged from 740 to 1250 g/m(2) and was slightly greater in paddy than on raised beds. Although there were early growth responses to fertilizer nitrogen on raised beds, the crop nitrogen content at maturity mostly exceeded 20 g/m(2) in both systems, so nitrogen was unlikely to have limited yield. Ceysvoni yielded best in both systems, a result of good post-anthesis growth and larger grain size, although its whole-grain mill-out percentage was poor relative to the other cultivars. Starbonnet and Lemont yielded poorly on raised beds, associated with too few tillers and too much leaf area. When grown on raised beds all cultivars experienced a delay in anthesis resulting in more tillers, leaf area and dry weight at anthesis, and probably a greater yield potential. The growth of rice after anthesis, however, was similar on raised beds and in paddy, so reductions in harvest index and grain size on raised beds were recorded. The data indicated that water supply was not a major limitation to rice growth on raised beds, but slower crop development was an issue that would affect the use of raised beds in a cropping system, especially in rice-growing areas where temperatures are too cool for optimal crop development. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Breeding methodologies for cultivated lucerne (Medicago sativa L.), an autotetraploid, have changed little over the last 50 years, with reliance on polycross methods and recurrent phenotypic selection. There has been, however, an increase in our understanding of lucerne biology, in particular the genetic relationships between members of the M. sativa complex, as deduced by DNA analysis. Also, the differences in breeding behaviour and vigour of diploids versus autotetraploids, and the underlying genetic causes, are discussed in relation to lucerne improvement. Medicago falcata, a member of the M. sativa complex, has contributed substantially to lucerne improvement in North America, and its diverse genetics would appear to have been under-utilised in Australian programs over the last two decades, despite the reduced need for tolerance to freezing injury in Australian environments. Breeding of lucerne in Australia only commenced on a large scale in 1977, driven by an urgent need to introgress aphid resistance into adapted backgrounds. The release in the early 1980s of lucernes with multiple pest and disease resistance (aphids, Phytophthora, Colletotrichum) had a significant effect on increasing lucerne productivity and persistence in eastern Australia, with yield increases under high disease pressure of up to 300% being recorded over the predominant Australian cultivar, up to 1977, Hunter River. Since that period, irrigated lucerne yields have plateaued, highlighting the need to identify breeding objectives, technologies, and the germplasm that will create new opportunities for increasing performance. This review discusses major goals for lucerne improvement programs in Australia, and provides indications of the germplasm sources and technologies that are likely to deliver the desired outcomes.
Resumo:
Previous studies have shown that a negative relationship exists between transpiration efficiency (TE) and carbon isotope discrimination (Delta) and between TE and specific leaf area (SLA) in Stylosanthes scabra, A glasshouse experiment was conducted to confirm these relationships in an F-2 population and to study the causal nature of these relationships through quantitative trait loci (QTL) analysis, One hundred and twenty F-2 genotypes from a cross between two genotypes within S. scabra were used. Three replications for each genotype were maintained through vegetative propagation, Water stress was imposed by maintaining plants at 40% of field capacity for about 45 d. To facilitate QTL analysis, a genetic linkage map consisting of 151 RAPD markers was developed, Results from this study show that Delta was significantly and negatively correlated with TE and biomass production. Similarly, SLA showed significant negative correlation with TE and biomass production, Most of the QTL for TE and Delta were present on linkage groups 5 and 11. Similarly, QTL for SLA, transpiration and biomass productivity traits were clustered on linkage groups 13 and 24, One unlinked marker was also associated with these traits, There were several markers coincident between different traits, At all the coincident QTL, the direction of QTL effects was consistent with phenotypic data, At the coincident markers between TE and Delta, high alleles of TE were associated with low alleles of Delta. Similarly, low alleles of SLA were associated with high alleles of biomass productivity traits and transpiration. At the coincident markers between trans-4-hydroxy-N-methyl proline (MHP) and relative water content (RWC), low alleles of MHP were associated with high alleles of RWC, This study suggests the causal nature of the relationship between TE and Delta. Phenotypic data and QTL, data show that SLA was more closely associated with biomass production than with TE, This study also shows that a cause-effect relationship may exist between SLA and biomass production.
Resumo:
Plant morphogenesis in vitro can be achieved via two pathways, somatic embryogenesis or organogenesis. Relationships between the culture medium and explant leading to morphogenesis are complex and, despite extensive study, remain poorly understood. Primarily the composition and ratio of plant growth regulators are manipulated to optimize the, quality and numbers of embryos or organs initiated. However, many species and varieties do not respond to this classical approach and require further optimization by the variation of other chemical or physical factors. Mineral nutrients form a significant component of culture media but are often overlooked as possible morphogenic elicitors. The combination of minerals for a particular plant species and developmental pathway are usually determined by the empirical manipulation of one or a combination of existing published formulations. Often only one medium type is used for the duration of culture even though this formulation may not be optimal for the different stages of explant growth and development. Furthermore, mineral studies have often focused on growth rather than morphogenesis with very little known of the relationships between mineral uptake and morphogenesis. This article examines the present knowledge of the main effects that mineral nutrients have on plant morphogenesis in vitro. In particular, the dynamics of nitrogen, phosphorus, and calcium supply during development are discussed.
Resumo:
Lucerne (Medicago sativa L.) is autotetraploid, and predominantly allogamous. This complex breeding structure maximises the genetic diversity within lucerne populations making it difficult to genetically discriminate between populations. The objective of this study was to evaluate the level of random genetic diversity within and between a selection of Australian-grown lucerne cultivars, with tetraploid M. falcata included as a possible divergent control source. This diversity was evaluated using random amplified polymorphic DNA (RAPDs). Nineteen plants from each of 10 cultivars were analysed. Using 11 RAPD primers, 96 polymorphic bands were scored as present or absent across the 190 individuals. Genetic similarity estimates (GSEs) of all pair-wise comparisons were calculated from these data. Mean GSEs within cultivars ranged from 0.43 to 0.51. Cultivar Venus (0.43) had the highest level of intra-population genetic diversity and cultivar Sequel HR (0.51) had the lowest level of intra-population genetic diversity. Mean GSEs between cultivars ranged from 0.31 to 0.49, which overlapped with values obtained for within-cultivar GSE, thus not allowing separation of the cultivars. The high level of intra- and inter-population diversity that was detected is most likely due to the breeding of synthetic cultivars using parents derived from a number of diverse sources. Cultivar-specific polymorphisms were only identified in the M. falcata source, which like M. sativa, is outcrossing and autotetraploid. From a cluster analysis and a principal components analysis, it was clear that M. falcata was distinct from the other cultivars. The results indicate that the M. falcata accession tested has not been widely used in Australian lucerne breeding programs, and offers a means of introducing new genetic diversity into the lucerne gene pool. This provides a means of maximising heterozygosity, which is essential to maximising productivity in lucerne.
Resumo:
Low temperature during panicle development in rice increases spikelet sterility. This effect is exacerbated by high rates of nitrogen (N) application in the field. Spikelet sterility induced by low temperature and N fertilisation was examined in glasshouse experiments to clarify the mechanisms involved. In two glasshouse experiments, 12-h periods of low (18/13degreesC) and high (28/23degreesC) day/night temperatures were imposed over periods of 5-7 days during panicle development, to determine the effects of low temperature and N fertilisation on spikelet sterility. In one experiment, 50% sunlight was imposed together with low temperature to investigate the additive effects of reduced solar radiation and low temperature. The effect of increased tillering due to N fertilisation was examined by a tiller removal treatment in the same experiment. Pollen grain number and spikelet sterility were recorded at heading and harvest, respectively. Although there was no significant effect of low temperature on spikelet sterility in the absence of applied N, low temperature greatly increased spikelet sterility as a result of a reduction in the number of engorged pollen grains per anther in the presence of applied N. Spikelet sterility was strongly correlated with the number of engorged pollen grains per anther. Low temperature during very early ( late stage of spikelet differentiation-pollen mother cell stage) and peak ( second meiotic division stage-early stage of extine formation) microspore development caused a severe reduction in engorged pollen production mainly as a result of reduced total pollen production. Unlike low temperature, the effect of shading was rather small. The increased tillering due to application of high rates of N, increased both spikelet number per plant and spikelet sterility under low temperature conditions. The removal of tillers as they appeared reduced the number of total spikelets per plant and maintained a large number of engorged pollen grains per anther which, in turn, reduced spikelet sterility. The number of engorged pollen grains per anther determined the numbers of intercepted and germinated pollen grains on the stigma. It is concluded that N increased tillering and spikelet number per plant and this, in turn, reduced the number of engorged pollen grains per anther, leading into increased spikelet sterility under low temperature condition.
Resumo:
Low temperatures impose restrictions on rice (Oryza sativa L.) production at high latitudes. This study is related to low temperature damage that can arise mid-season during the panicle development phase. The objective of this study was to determine whether low temperature experienced by the root, panicle, or foliage is responsible for increased spikelet sterility. In temperature-controlled glasshouse experiments, water depth, and water and air temperatures, were changed independently to investigate the effects of low temperature in the root, panicle, and foliage during microspore development on spikelet sterility. The total number of pollen and number of engorged pollen grains per anther, and the number of intercepted and germinated pollen grains per stigma, were measured. Spikelet sterility was then analysed in relation to the total number of pollen grains per spikelet and the efficiency with which these pollen grains became engorged, were intercepted by the stigma, germinated, and were involved in fertilisation. There was a significant combined effect of average minimum panicle and root temperatures on spikelet sterility that accounted for 86% of the variation in spikelet sterility. Total number of pollen grains per anther was reduced by low panicle temperature, but not by low root temperature. Whereas engorgement efficiency ( the percentage of pollen grains that were engorged) was determined by both root and panicle temperature, germination efficiency (the percentage of germinated pollen grains relative to the number of engorged pollen grains intercepted by the stigma) was determined only by root temperature. Interception efficiency (i.e. percentage of engorged pollen grains intercepted by the stigma), however, was not affected by either root or panicle temperature. Engorgement efficiency was the dominant factor explaining the variation in spikelet sterility. It is concluded that both panicle and root temperature affect spikelet sterility in rice when the plant encounters low temperatures during the microspore development stage.
Resumo:
mais consumida no país, e proscrita pela Lei n° 11.343 de 23 de agosto de 2006 (chamada de “nova lei de droga”), onde todos os isômeros, sais, éteres e ésteres do ∆9-Tetrahidrocannabinol (THC), princípio ativo, foram proscritos. O método utilizado pela Polcia Civil do Estado do Espírito Santo para a identificação de cannabinóides é o teste colorimétrico, por meio de solução básica de Salt Fast Blue B, o qual apresenta resultados falsos negativos e falsos positivos. A técnica de espectrometria de massas de altíssima resolução e exatidão de massas (ESI(-)FTICR MS), permite detectar os principais cannabinóides na forma de molcula desprotonada, íon [M-H]-. Alguns íons que podem ser identificados são: [CBN - H]- de m/z 309 (CBN = cannabinol); [THC - H]- de m/z 313 (THC = tetrahidrocannabinol) e [CBD - H]- de m/z 313; [CBC - H]- de m/z 327 (CBC = cannabicromeno); [CBEA - H]- de m/z 345 (CBEA = ácido cannabielsóico); [CBNA - H]- de m/z 353 (CBNA = ácido cannabinólico); [THCA - H]- de m/z 357 (THCA = ácido tetrahidrocannabinólico); [8α, 11-Bis-hydroxy-∆9-THC-A - H]- de m/z 389); [∆9-THCA +C2H2O - H]- de m/z 357; e dímeros com m/z de 637, 653, 673, 681, 685 e 717. Foram encontrados adulterantes identificados como [M + N + H]+ : 491; [2M + N + H]+ : 819 e [3M + N + H]+ : 1147, onde M = OTHC (328Da C21H28O3) e N = Nicotina (162Da C10H14N2), alm de lidocaína e cocaína. Ainda foram identificados alguns noncannabinóides como Cannflavino A e B e ácidos graxos como palmítico, oleico, linolnico e gama-linolnico nos extratos de sementes de Cannabis. Este estudo tem o objetivo de identificar o perfil químico de amostras de maconha, apreendidas pela Polcia Civil do Estado do Espírito Santo, por ESI(±)-FT-ICR MS.
Resumo:
O objetivo deste trabalho foi estimar as correlações genotípicas entre caracteres e investigar a diversidade genética de cultivares de arroz mais utilizados em cultivo no período de 1950 a 2001. Foram conduzidos dois experimentos de campo, nas localidades denominadas Aeroporto e Agronomia, ambas pertencentes à Universidade Federal de Viçosa, em Viçosa, MG, no delineamento de blocos ao acaso com três repetições e 25 cultivares. Foram coletados e analisados os dados referentes à produção de grãos, a altura das plantas, dias para a floração, estande inicial, estande final, perfilhamento útil, grãos por panícula, percentagem de espiguetas estéreis por panícula e peso do grão. Verificou-se que as correlações genotípicas foram altas para a maioria dos pares de caracteres. Os caracteres que mais influenciaram a produtividade foram grãos por panícula, percentagem de grãos estéreis e peso do grão. Os cultivares Guarani e Bico Ganga foram os mais divergentes geneticamente e os cultivares Amarelo e IAC 25, os mais similares.
Resumo:
Este estudo foi desenvolvido objetivando comparar diferentes critérios de seleção, indicar o método de seleção que propicia maiores estimativas de ganho genético e identificar genótipos superiores de alfafa quanto a características produtivas, morfolgicas e bromatolgicas. Foram avaliadas a produção de matéria seca, altura de planta, tolerância a doenças, aceitação fenotípica pelos animais, proteína bruta, digestibilidade in vitro da matéria seca, fibra em detergente neutro e relação caule/folha de 92 acessos provenientes do INTA-Argentina, tendo como testemunha o Crioula. Os Índices de Mulamba & Mock, distância do genótipo ao ideótipo e Elston foram os mais adequados a esse tipo de estudo. Os genótipos Sequel, CUF 101, Siriver 2, Florida 77, Diamond, Sequel 2, LE N 2, Medina, Kern, Rio Grande, DK 166, DK 181, Perla SP INTA, WL 516, Rocio, LE Semit 711 e LE N 3 foram os indicados à seleção pelos maiores índices de Mulamba e Mock, distância do genótipo ao ideótipo e índice de Elston.
Resumo:
As plantas em condições naturais estão expostas a vários estresses ambientais que afetam seu metabolismo. Dentre esses, a salinidade dos solos e da água de irrigação é um dos mais sérios problemas para a agricultura irrigada. O objetivo deste trabalho foi identificar, por meio de caracteres morfolgicos, a variabilidade genética de 10 genótipos de arroz, cultivados in vitro, e agrupar esses genótipos para o caráter tolerância à salinidade. Os tratamentos foram constituídos por 10 genótipos e quatro concentrações de NaCl (0, 4, 8 e 12 mg L-1) acrescidas ao meio de cultura MS. Após 21 dias, foram avaliados diversos caracteres morfolgicos, para os quais foram realizados cálculos percentuais de desempenho relativo (aumento ou redução), considerando-se o valor absoluto do tratamento-controle (0 mg L-1). Todos os caracteres mensurados tiveram seu desenvolvimento reduzido em substrato salino, sendo os correspondentes à biomassa média da parte aérea e do sistema radicular os mais sensíveis ao NaCl. Observou-se dissimilaridade entre os genótipos estudados para tolerância à salinidade, verificada pela formação de três grupos distintos pelo método hierárquico UPGMA e dois grupos pelo método de Tocher, sendo o genótipo BRS Bojuru o mais tolerante e BRS "7" Taim e BRS Ligeirinho os mais sensíveis à salinidade.
Resumo:
A cultura do arroz destaca-se como uma das mais importantes do mundo, por apresentar facilidade de adaptação a condições edafoclimáticas distintas. Cultivado e consumido em todos continentes, o arroz destaca-se pela produção e área de cultivo, desempenhando papel estratégico tanto em nível econômico quanto social. No Brasil, a maior parcela da produção de arroz é proveniente do ecossistema de várzea. Este trabalho objetivou estudar a eficiência e resposta ao uso de fósforo de variedades de arroz (Oryza sativa L.), em várzea irrigada, no Sudoeste do Estado de Tocantins. Os tratamentos envolveram oito variedades comerciais de arroz (BRS-Jaçanã, Best-2000, BRS-Guará, BRS-Alvorada, BRA-01381, AN-Cambará, BRS 7-Taim e EPAGRI-109), que foram cultivadas em dois ambientes distintos. Para simular ambientes com baixo e alto níveis de fósforo, foram utilizadas as doses de 20 e 120 kg ha-1 de P2O5, respectivamente. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. Por meio da produtividade de grãos, as variedades foram classificadas quanto à eficiência no uso e resposta à aplicação de fósforo. Demonstrou-se que apenas a variedade BRS-Alvorada é eficiente quanto ao uso de fósforo e responsiva a sua aplicação.