920 resultados para Neural Stem Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the ``Gain-offunction'' mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated ``opening'' resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 mu g/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 mu g/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New methods of surface modification of transparent silicone substrate were developed, and a new set of cell culture devices that provide homogeneous substrate strain was designed. Using the new device, effects of cyclic substrate strain on bone marrow mesenchymal stem cells(MSCs) were studied. It was found that cyclic strain influenced proliferation and differentiation of bone marrow MSCs in different ways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl-D-aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI or brittle bone disease) is a disorder of connective tissues caused by mutations in the collagen genes. We previously showed that intrauterine transplantation of human blood fetal stem/stromal cells in OI mice (oim) resulted in a significant reduction of bone fracture. This work examines the cellular mechanisms and mechanical bone modifications underlying these therapeutic effects, particularly examining the direct effects of donor collagen expression on bone material properties. In this study, we found an 84% reduction in femoral fractures in transplanted oim mice. Fetal blood stem/stromal cells engrafted in bones, differentiated into mature osteoblasts, expressed osteocalcin, and produced COL1a2 protein, which is absent in oim mice. The presence of normal collagen decreased hydroxyproline content in bones, altered the apatite crystal structure, increased the bone matrix stiffness, and reduced bone brittleness. In conclusion, expression of normal collagen from mature osteoblast of donor origin significantly decreased bone brittleness by improving the mechanical integrity of the bone at the molecular, tissue, and whole bone levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, five homologous feeder cell lines were developed for the culture and maintenance of rhesus monkey embryonic stem cells (rESCs). Monkey ear skin fibroblasts (MESFs), monkey oviductal fibroblasts (MOFs), monkey follicular granulosa fibroblast-like (MFG) cells, monkey follicular granulosa epithelium-like (MFGE) cells, and clonally derived fibroblasts from MESF (CMESFs) were established and compared with the ability of mouse embryonic fibroblasts (MEFs) to support rESC growth. MESF, MOF, MFG, and CMESF cells, but not MFGE cells, were as good as or better than MEFs in supporting undifferentiated growth while maintaining the differentiation potential of the rESCs. In an effort to understand the unique properties of supportive feeder cells, expression levels for a number of candidate genes were examined. MOF, MESF, and MEF cells highly expressed leukemia inhibitory factor, ciliary neurotrophic factor, basic fibroblast growth factor, stem cell factor, transforming growth factor PI, bone morphogenetic protein 4, and WNT3A, whereas WNT2, WNT4, and WNT5A were downregulated, compared with MFGE cells. Additionally, all monkey feeder cell lines expressed Dkk1 and LRP6, antagonists of the WNT signaling pathway, but not WNT1, WNT8B, or Dkk2. rESCs grown on homologous feeders maintained normal karyotypes, displayed the characteristics of ESCs, including morphology, alkaline phosphatase, Oct4, the cell surface markers stage-specific embryonic antigen (SSEA)-3, SSEA-4, tumor-related antigen (TRA)-1-60, and TRA-1-81, and formed cystic embryoid bodies in vitro that included differentiated cells representing the three major germ layers. These results indicate that the four homologous feeder cell lines can be used to support the undifferentiated growth and maintenance of pluripotency in rESCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We described the derivation of four stable pluripotent rabbit embryonic stem cell ( ESC) lines, one ( RF) from blastocysts fertilized in vivo and cultured in vitro and three ( RP01, RP02, and RP03) from parthenogenetic blastocysts. These ESC lines have be

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pluripotency and self-renewal of embryonic stem cells (ESC) are regulated by a variety of cytokines/growth factors with some species differences. We reported previously that rabbit ESC (rESC) are more similar to primate ESC than to mouse ESC. However,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

我们以前的研究建立了五株猕猴饲养层细胞系来支持猕猴胚胎干细胞(rESCs)的生长:一岁猴耳皮肤成纤维细胞(MESFs)、两岁猴输卵管成纤维细胞(MOFs)、成年猴卵泡颗粒成纤维样细胞(MFGs)、成年猴卵泡颗粒上皮样细胞(MFGEs),以及MESFs的克隆成纤维细胞(CMESFs).我们发现MESFs、CMESFs、MOFs和MFGs,而不足MFGEs支持猕猴胚胎干细胞(rESCs,rhesus embryonic stem cells)的生长.通过半定量PCR的方法,我们在支持性的饲养层细胞中检测到了一些基因的高表达.在本研究中,我们运用Affymetrix公司的GeneChip Rhesus Macaque Genome Array芯片来研究这五株同源饲养层的表达谱,希望发现哪些细胞因子和信号通路在维持rESCs中起到重要作用.结果表明,除MFGE外,包括GREM2、bFGF,、KITLG,、DKK3、GREM1、AREG、SERPINF1和LTBF1等八个基因的mRNA在支持性的饲养层细胞中高表达.本研究结果提示,很多信号通路在支持rESCs的未分化生长和多潜能性方面可能起到了冗余的作用.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that the maintenance and proliferation of undifferentiated rhesus monkey embryonic stem (rES) cells requires medium supplemented with fetal bovine serum (FBS). Due to the uncharacterized composition and variation in serum nature, the present study aimed to replace the serum-containing medium with a serum-free medium in the rES cell culture. The results showed that after the initial 48-h culture in the routinely used serum-containing medium, rES cells can grow and proliferate for a prolonged period in the serum-free medium composed of DMEM supplemented with a cocktail of BSA, IGF-1, TGF-alpha, bFGF, aFGF, estradiol, and progesterone. rES cells cultured in the serum-free medium maintained high level of alkaline phosphatase activity and OCT4 level. There was no indication of differentiation as judged by the marker gene expression of all three embryonic germ layers and trophoblast. In addition, serum-free culture would not affect the passage capacity and differentiation potential of rES cells. This work will facilitate the future study of induced differentiation of rES cells and other applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common culture system of rhesus monkey embryonic stem (rES) cells depends largely on feeder cells and serum, which limits the research and application of rES cells. This study reports a feeder layer-free and serum-free system for culture of rES cells.