762 resultados para Neural Network Assembly Memory Model


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, practical generation of identification keys for biological taxa using a multilayer perceptron neural network is described. Unlike conventional expert systems, this method does not require an expert for key generation, but is merely based on recordings of observed character states. Like a human taxonomist, its judgement is based on experience, and it is therefore capable of generalized identification of taxa. An initial study involving identification of three species of Iris with greater than 90% confidence is presented here. In addition, the horticulturally significant genus Lithops (Aizoaceae/Mesembryanthemaceae), popular with enthusiasts of succulent plants, is used as a more practical example, because of the difficulty of generation of a conventional key to species, and the existence of a relatively recent monograph. It is demonstrated that such an Artificial Neural Network Key (ANNKEY) can identify more than half (52.9%) of the species in this genus, after training with representative data, even though data for one character is completely missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown through a number of experiments that neural networks can be used for a phonetic typewriter. Algorithms can be looked on as producing self-organizing feature maps which correspond to phonemes. In the Chinese language the utterance of a Chinese character consists of a very simple string of Chinese phonemes. With this as a starting point, a neural network feature map for Chinese phonemes can be built up. In this paper, feature map structures for Chinese phonemes are discussed and tested. This research on a Chinese phonetic feature map is important both for Chinese speech recognition and for building a Chinese phonetic typewriter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years researchers in the Department of Cybernetics have been developing simple mobile robots capable of exploring their environment on the basis of the information obtained from a few simple sensors. These robots are used as the test bed for exploring various behaviours of single and multiple organisms: the work is inspired by considerations of natural systems. In this paper we concentrate on that part of the work which involves neural networks and related techniques. These neural networks are used both to process the sensor information and to develop the strategy used to control the robot. Here the robots, their sensors, and the neural networks used and all described. 1.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of charge and aromatic stacking interactions on the self-assembly of a series of four model amyloid peptides has been examined. The four model peptides are based on the KLVFF motif from the amyloid Beta peptide, ABeta(16-20) extended at the N terminus with two Beta-alanine residues. We have studied NH2-BetaABetaAKLVFF-COOH (FF), NH2-BetaABetaAKLVFCOOH (F), CH3CONH-BetaABetaAKLVFF-CONH2 (CapF), and CH3CONH-BetaABetaAKLVFFCONH2 (CapFF). The former two are uncapped (net charge plus 2) and differ by one hydrophobic phenylalanine residue; the latter two are the analogous capped peptides (net charge plus 1). The self-assembly characteristics of these peptides are remarkably different and strongly dependent on concentration. NMR shows a shift from carboxylate to carboxylic acid forms upon increasing concentration. Saturation transfer measurements of solvent molecules indicate selective involvement of phenylalanine residues in driving the self-assembly process of CapFF due presumably to the effect of aromatic stacking interactions. FTIR spectroscopy reveals beta-sheet features for the two peptides containing two phenylalanine residues but not the single phenylalanine residue, pointing again to the driving force for self-assembly. Circular dichroism (CD) in dilute solution reveals the polyproline II conformation, except for F which is disordered. We discuss the relationship of this observation to the significant pH shift observed for this peptide when compared the calculated value. Atomic force microscopy and cryogenic-TEM reveals the formation of twisted fibrils for CapFF, as previously also observed for FF. The influence of salt on the self-assembly of the model beta-sheet forming capped peptide CapFF was investigated by FTIR. Cryo-TEM reveals that the extent of twisting decreases with increased salt concentration, leading to the formation of flat ribbon structures. These results highlight the important role of aggregation-induced pKa shifts in the self-assembly of model beta-sheet peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of complexity is particularly relevant to the field of control engineering, since many engineering problems are inherently complex. The inherent complexity is such that straightforward computational problem solutions often produce very poor results. Although parallel processing can alleviate the problem to some extent, it is artificial neural networks (in various forms) which have recently proved particularly effective, even in dealing with the causes of the problem itself. This paper presents an overview of the current neural network research being undertaken. Such research aims to solve the complex problems found in many areas of science and engineering today.