804 resultados para Neumann problem
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
The Container Loading Problem (CLP) literature has traditionally evaluated the dynamic stability of cargo by applying two metrics to box arrangements: the mean number of boxes supporting the items excluding those placed directly on the floor (M1) and the percentage of boxes with insufficient lateral support (M2). However, these metrics, that aim to be proxies for cargo stability during transportation, fail to translate real-world cargo conditions of dynamic stability. In this paper two new performance indicators are proposed to evaluate the dynamic stability of cargo arrangements: the number of fallen boxes (NFB) and the number of boxes within the Damage Boundary Curve fragility test (NB_DBC). Using 1500 solutions for well-known problem instances found in the literature, these new performance indicators are evaluated using a physics simulation tool (StableCargo), replacing the real-world transportation by a truck with a simulation of the dynamic behaviour of container loading arrangements. Two new dynamic stability metrics that can be integrated within any container loading algorithm are also proposed. The metrics are analytical models of the proposed stability performance indicators, computed by multiple linear regression. Pearson’s r correlation coefficient was used as an evaluation parameter for the performance of the models. The extensive computational results show that the proposed metrics are better proxies for dynamic stability in the CLP than the previous widely used metrics.
Resumo:
The Rural Postman Problem (RPP) is a particular Arc Routing Problem (ARP) which consists of determining a minimum cost circuit on a graph so that a given subset of required edges is traversed. The RPP is an NP-hard problem with significant real-life applications. This paper introduces an original approach based on Memetic Algorithms - the MARP algorithm - to solve the RPP and, also deals with an interesting Industrial Application, which focuses on the path optimization for component cutting operations. Memetic Algorithms are a class of Metaheuristics which may be seen as a population strategy that involves cooperation and competition processes between population elements and integrates “social knowledge”, using a local search procedure. The MARP algorithm is tested with different groups of instances and the results are compared with those gathered from other publications. MARP is also used in the context of various real-life applications.
Resumo:
Leptospira spp. are delicate bacteria that cannot be studied by usual microbiological methods. They cause leptospirosis, a zoonotic disease transmitted to humans through infected urine of wild or domestic animals. We studied the incidence of this disease in the Uruguayan population, its epidemiologic and clinical features, and compared diagnostic techniques. After examining 6,778 suspect cases, we estimated that about 15 infections/100,000 inhabitants occurred yearly, affecting mainly young male rural workers. Awareness about leptospirosis has grown among health professionals, and its lethality has consequently decreased. Bovine infections were probably the principal source of human disease. Rainfall volumes and floods were major factors of varying incidence. Most patients had fever, asthenia, myalgias or cephalalgia, with at least one additional abnormal clinical feature. 30-40% of confirmed cases presented abdominal signs and symptoms, conjunctival suffusion and altered renal or urinary function. Jaundice was more frequent in patients aged > 40 years. Clinical infections followed an acute pattern and their usual outcome was complete recovery. Laboratory diagnosis was based on indirect micro-agglutination standard technique (MAT). Second serum samples were difficult to obtain, often impairing completion of diagnosis. Immunofluorescence was useful as a screening test and for early detection of probable infections.
Resumo:
Dissertação para obtenção do Grau de Mestre em Lógica Computacional
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Doutor em Matemática
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.
Resumo:
Envenoming snakebites are thought to be a particularly important threat to public health worldwide, especially in rural areas of tropical and subtropical countries. The true magnitude of the public health threat posed by snakebites is unknown, making it difficult for public health officials to optimize prevention and treatment. The objective of this work was to conduct a systematic review of the literature to gather data on snakebite epidemiology in the Amazon region and describe a case series of snakebites from epidemiological surveillance in the State of Amazonas (1974-2012). Only 11 articles regarding snakebites were found. In the State of Amazonas, information regarding incidents involving snakes is scarce. Historical trends show an increasing number of cases after the second half of the 1980s. Snakebites predominated among adults (20-39 years old; 38%), in the male gender (78.9%) and in those living in rural areas (85.6%). The predominant snake envenomation type was bothropic. The incidence reported by the epidemiological surveillance in the State of Amazonas, reaching up to 200 cases/100,000 inhabitants in some areas, is among the highest annual snakebite incidence rates of any region in the world. The majority of the cases were reported in the rainy season with a case-fatality rate of 0.6%. Snakebite envenomation is a great disease burden in the State of Amazonas, representing a challenge for future investigations, including approaches to estimating incidence under-notification and case-fatality rates as well as the factors related to severity and disabilities.