462 resultados para Nanoporous Carbons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A heterogeneous modified vacancy solution model of adsorption developed is evaluated. The new model considers the adsorption process through a mass-action law and is thermodynamically consistent, while maintaining the simplicity in calculation of multicomponent adsorption equilibria, as in the original vacancy solution theory. It incorporates the adsorbent heterogeneity through a pore-width-related potential energy, represented by Steele's 10-4-3 potential expression. The experimental data of various hydrocarbons, CO2 and SO2 on four different activated carbons - Ajax, Norit, Nuxit, and BPL - at multiple temperatures over a wide range of pressures were studied by the heterogeneous modified VST model to obtain the isotherm parameters and micropore-size distribution of carbons. The model successfully correlates the single-component adsorption equilibrium data for all compounds studied on various carbons. The fitting results for the vacancy occupancy parameter are consistent with the pressure change on different carbons, and the effect of pore heterogeneity is important in adsorption at elevated pressure. It predicts binary adsorption equilibria better than the IAST scheme, reflecting the significance of molecular size nonideality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of PACs (primary adsorption centers) in the mesopore (i.e., transport) region of activated carbons during adsorption of polar species, such as water, is unclear. A classical model of three-dimensional adsorption on finite PACs is presented. The model is a preliminary, theoretical investigation into adsorption on mesopore PACs and is intended to give some insight into the energetic and physical processes at work. Work processes are developed to obtain isotherms and three-dimensional sorbate growth on PACs of varying size and energetic characteristics. The work processes allow two forms of adsorbed phase growth: densification at constant boundary and boundary growth at constant density. Relatively strong sorbate-sorbent interactions and strong surface tension favor adsorbed phase densification over boundary growth. Conversely, relatively weak sorbate-sorbent interactions and weak surface tension favor boundary growth over densification. If sorbate-sorbate interactions are strong compared to sorbate-sorbent interactions, condensation with hysteresis occurs. This can also give rise to delayed boundary growth, where all initial adsorption occurs in the monolayer only. The results indicate that adsorbed phase growth on PACs may be quite complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thermodynamic approach based on the Bender equation of state is suggested for the analysis of supercritical gas adsorption on activated carbons at high pressure. The approach accounts for the equality of the chemical potential in the adsorbed phase and that in the corresponding bulk phase and the distribution of elements of the adsorption volume (EAV) over the potential energy for gas-solid interaction. This scheme is extended to subcritical fluid adsorption and takes into account the phase transition in EAV The method is adapted to gravimetric measurements of mass excess adsorption and has been applied to the adsorption of argon, nitrogen, methane, ethane, carbon dioxide, and helium on activated carbon Norit R I in the temperature range from 25 to 70 C. The distribution function of adsorption volume elements over potentials exhibits overlapping peaks and is consistently reproduced for different gases. It was found that the distribution function changes weakly with temperature, which was confirmed by its comparison with the distribution function obtained by the same method using nitrogen adsorption isotherm at 77 K. It was shown that parameters such as pore volume and skeleton density can be determined directly from adsorption measurements, while the conventional approach of helium expansion at room temperature can lead to erroneous results due to the adsorption of helium in small pores of activated carbon. The approach is a convenient tool for analysis and correlation of excess adsorption isotherms over a wide range of pressure and temperature. This approach can be readily extended to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption of one nondissociating and four dissociating aromatic compounds onto three untreated activated carbons from dilute aqueous solutions were investigated. All adsorption experiments were preformed in pH-controlled solutions. The experimental isotherms were analyzed using the homogeneous Langmuir model. The surface chemical properties of the activated carbons were characterized using a combination of water adsorption, X-ray photoemission spectroscopy, and mass titration. These data give rise to a new insight into the adsorption mechanism of aromatic solutes, in their molecular and ionic forms, onto untreated activated carbons. It was found that, for the hydrophilic activated carbons, the dominant adsorption forces were observed to be dipolar interactions when the solutes were in their molecular form whereas dispersive forces, such as pi-pi interactions, were most likely dominant in the case of the basic hydrophobic carbons. However, when the solutes were in their ionic form adsorption occurs in all cases through dispersive forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain glycosidase inhibitors possess potent antiviral, antitumour and antidiabetic properties. Glyconic acid lactones, the earliest glycosidase inhibitors identified, have planar anomeric carbons that mimic the transition state of glycoside hydrolysis. Other classes include lactams, glycals, epoxides, halides and sulfonium ions, the latter based on the natural product salacinol from an antidiabetic herb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solubility of ethyl propionate, ethyl butyrate, and ethyl isovalerate in supercritical carbon dioxide was measured at temperature ranging from 308.15 to 333.15 K and pressure ranging from 85 to 195 bar. At the same temperature, the solubility of these compounds increases with pressure. The crossover pressure region was also observed in this study. The experimental data were correlated by the semi-empirical Chrastil equation and Peng-Robinson equation of state (EOS) using several mixing rules. The Peng-Robinson EOS gives better solubility prediction than the empirical Chrastil equation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated mathematical model for the kinetics of multicomponent adsorption on microporous carbon was developed. Transport in this bidisperse solid is represented by balance equations in the macropore and micropore phases, in which gas-phase diffusion dominates the mass transfer in the macropores, with the phenomenological diffusivities represented by the generalized Maxwell-Stefan (GMS) formulation. Viscous flow also contributes to the macropore fluxes and is included in the MS expressions. Diffusion of the adsorbed phase controls the mass transfer in the micro ore phase, p which is also described in a similar way by the MS method. The adsorption isotherms are represented by a new heterogeneous modified vacancy solution theory formulation of adsorption, which has proved to be a robust method for adsorption on activated carbons. The model is applied to the coadsorption and codesorption of C2H6 and C3H8 on Ajax and Norit carbon, as well as the displacement on Ajax carbon. The effect of the viscous flow in the macropore phase is not significant for the cases studied. The model accurately predicts the overshoot behavior and rollup of C2H6 during coadsorption. The prediction for the heavier compound C3H8 is always satisfactory, though at higher C3H8 mole fraction, the overshoot extent of C2H6 is overpredicted, possibly due to neglect of heat effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of pore-network connectivity on binary liquid-phase adsorption equilibria using the ideal adsorbed solution theory (LAST) was studied. The liquid-phase binary adsorption experiments used ethyl propionate, ethyl butyrate, and ethyl isovalerate as the adsorbates and commercial activated carbons Filtrasorb-400 and Norit ROW 0.8 as adsorbents. As the single-component isotherm, a modified Dubinin-Radushkevich equation was used. A comparison with experimental data shows that incorporating the connectivity of the pore network and considering percolation processes associated with different molecular sizes of the adsorptives in the mixture, as well as their different corresponding accessibility, can improve the prediction of binary adsorption equilibria using the LAST Selectivity of adsorption for the larger molecule in binary systems increases with an increase in the pore-network coordination number, as well with an increase in the mean pore width and in the spread of the pore-size distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MCM-41 periodic mesoporous silicates with a high degree of structural ordering are synthesized and used as model adsorbents to study the isotherm prediction of nitrogen adsorption. The nitrogen adsorption isotherm at 77 K for a macroporous silica is measured and used in high-resolution alpha(s)-plot comparative analysis to determine the external surface area, total surface area and primary mesopore volume of the MCM-41 materials. Adsorption equilibrium data of nitrogen on the different pore size MCM-41 samples (pore diameters from 2.40 to 4.92 nm) are also obtained. Based on the Broekhoff and de Boer' thermodynamic analysis, the nitrogen adsorption isotherms for the different pore size MCM-41 samples are interpreted using a novel strategy, in which the parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting only the multilayer region prior to capillary condensation for C-16 MCM-41. Subsequently the entire isotherm, including the phase transition, is predicted for all the different pore size MCM-41 samples without any fitting. The results show that the prediction of multilayer adsorption and total adsorbed amount are in good agreement with the experimental isotherms. The predictions of the relative pressure corresponding to capillary equilibrium (coexistence) transition agree remarkably with experimental data on the adsorption branch even for hysteretic isotherms, confirming that this is the branch appropriate for pore size distribution analysis. The impact of pore radius on the adsorption film thickness and capillary coexistence pressure is also investigated, and found to agree with the experimental data. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists in a study about the chemical activation of charred rice hulls using NaOH as the activation agent. The influence of the naturally-occurring silica was particularly evidenced. X-ray diffraction patterns showed the formation of sodium carbonate and silicates in the activated samples, whereas thermogravimetric curves revealed a strong reduction in the ash content of these samples after washing with water. Nitrogen adsorption data indicated a microporosity development only in the washed samples, with BET surface area values of 450 and 1380 m2/g achieved for the samples activated at 800 °C starting from the precursor with or without silica, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O 2,4-diclorofenoxiacético (2,4-D) é um dos herbicidas mais consumidos no Brasil e é preferencialmente usado devido a sua boa seletividade e baixo custo. Possui alta toxidade e baixa biodegradabilidade, oferecendo risco à saúde humana e ao meio ambiente, podendo ser encontrado em solos, águas superficiais e subterrâneas. Estudos mostram que o tratamento convencional da água possui baixa eficácia na remoção de microcontaminantes, com isso várias técnicas têm sido utilizadas na remoção de compostos em água, como a adsorção por carvão ativado. Apresenta-se a adsorção em carvão ativado tem se demonstrado como tecnologia eficiente na remoção de diversos contaminantes, dentre eles os agrotóxicos. Assim, o presente trabalho objetivou avaliar a adsorção do 2,4-D por três carvões ativados em pó (CAP) em água ultrapura e em água bruta do Rio Santa Maria da Vitória. A quantificação do herbicida foi analisada por cromatografia líquida de alta eficiência, após concentração da amostra pelo método de extração em fase sólida. Os ensaios de adsorção foram realizados com carvões ativados derivados da casca de coco (CAP-01), pinus (CAP-02) e palha de café (CAP-03), que foram caracterizados e avaliados na sua capacidade de remoção do 2,4-D nas duas matrizes de água. Dois modelos de isoterma de adsorção, Langmuir e Freundlich, foram aplicados para descrever os dados de adsorção, que indicaram o CAP-02 como o carvão que apresentou a melhor capacidade de adsorção do 2,4-D entre os carvões estudados, tanto em água ultrapura quanto em água bruta. Nos ensaios realizados em água bruta, houve redução da adsorção do 2,4-D para as três amostras de CAP, quando comparado com os ensaios realizados em água ultrapura, indicando interferência de compostos, como a matéria orgânica, no processo de adsorção.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous carbon materials were prepared through template method approach using porous clay heterostructures (PCHs) as matrix and furfuryl alcohol as carbon precursor. Three PCHs prepared using amines with 8, 10 and 12 carbon atoms were used. The effect of several impregnation-polymerization cycles of the carbon precursor, the carbonization temperature and the need of a previous surface alumination were evaluated. The presence of two porosity domains was identified in all the carbon materials. These two domains comprise pores resulting from the carbonization of the polymer film formed in the inner structure of the PCH (domain I) and larger pores created by the clay particles aggregation (domain II). The predominance of the porosity associated to domain I or II can be achieved by choosing a specific amine to prepare the PCH matrix. Carbonization at 700 C led to the highest development of pores of domain I. In general, the second impregnation-polymerization cycle of furfuryl alcohol resulted in a small decrease of both types of porosity domains. Furthermore the previous acidification of the surface to create acidic sites proved to be unnecessary. The results showed the potential of PCHs as matrices to tailor the textural properties of carbons prepared by template mediated synthesis.