416 resultados para NOREPINEPHRINE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In six young obese women (mean weight 85 +/- 3 kg) with a childhood history of obesity, and in six young nonobese women (mean weight 55 +/- 2 kg), the energy expenditure was measured during 24 h in a respiratory chamber with a maintenance energy intake. The next day, the thermogenic response to a mixed meal was investigated by using an open circuit indirect calorimetry hood system. In addition, five of the same obese women were similarly studied after a mean weight loss of 12.1 kg (14% of initial body weight) consecutive to an 11-wk hypocaloric diet (protein-supplemented modified fast). Expressed in absolute terms, the total 24 h and basal energy expenditures were found to be significantly greater in the obese (2208 +/- 105 and 1661 +/- 56 kcal/24 h, respectively) than in the controls (1746 +/- 61 and 1230 +/- 40 kcal/24 h, respectively). After weight loss, both the total 24-h and the basal energy expenditures were significantly reduced (2009 +/- 99 kcal/24 h and 1423 +/- 43 kcal/24 h respectively), but both values were still greater than that of the control subjects. The thermogenic response to the mixed meal (a liquid diet containing 17, 54, and 29% as protein, carbohydrate, and lipid calories, respectively, and an energy level determined to cover 60% of the basal energy expenditure computed for 24 h) was found to be significantly reduced in the obese as compared to controls (ie, 7.6 +/- 0.4% versus 9.5 +/- 0.4% of the energy content of the load, respectively, p less than 0.025). After weight loss, the postprandial thermogenesis of the obese was still markedly reduced (ie, 6.2 +/- 0.8%). Both before and after weight loss, the relative increase in diurnal urinary norepinephrine excretion was found to be lower in the obese than in controls, when compared to the nocturnal values. These results show that the greater 24 h energy expenditure of obese women is entirely due to their higher basal metabolic rate. The lower thermogenic response to the meal in the obese supports the concept of a thermogenic defect which can favor energy gain; furthermore, the unchanged response after weight loss in the obese suggests that the thermogenic defect may be a cause rather than a consequence of obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonhypotensive dose of endotoxin was administered to normal conscious rats to evaluate the vascular and humoral effects of endotoxemia per se. Mean blood pressure and heart rate remained stable during the 45 min infusion of Escherichia coli endotoxin (0.01 mg/min). However, a marked increase in plasma renin activity (4.2 +/- 0.48 vs. 30.2 +/- 6 ng.ml-1.h-1, mean +/- SE, P less than 0.01), plasma epinephrine (0.112 +/- 0.04 vs. 1.71 +/- 0.5 ng/ml, P less than 0.01), and plasma norepinephrine (0.269 +/- 0.028 vs. 1.3 +/- 0.2 ng/ml, P less than 0.001) was observed during infusion in endotoxin-treated rats when compared with the vehicle-treated animals. In addition, the blood pressure response to exogenous norepinephrine was significantly reduced during nonhypotensive endotoxemia. Significant changes in regional blood flow distribution, as assessed by radiolabeled microspheres, were observed in endotoxemic rats; in particular a decrease in renal blood flow (7.39 +/- 0.43 vs. 5.97 +/- 0.4 ml.min-1.g-1, P less than 0.05) and an increase in coronary blood flow (5.01 +/- 0.38 vs. 6.44 +/- 0.33 ml.min-1.g-1, P less than 0.01) were found. The role of prostaglandins in the vascular and humoral alterations induced by nonhypotensive endotoxemia was also examined. Pretreatment with indomethacin (5 mg) prevented the increase in plasma renin activity as well as plasma catecholamine levels. On the contrary, the decreased vascular reactivity and the reduction in renal blood flow observed during endotoxemia were not affected by prostaglandin synthesis inhibition. Thus significant vascular and humoral changes have been found during endotoxemia even in absence of hypotension.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated in conscious normotensive rats the effect of SKF64139 (2 mg i.v.), a potent phenylethanolamine N-methyltransferase (PNMT) inhibitor, on blood pressure responses to norepinephrine (40, 80, and 160 ng i.v.); methoxamine (2.5, 5 and 10 micrograms i.v.), a directly active sympathomimetic agent that is not taken up by adrenergic nerves; and tyramine (20, 40, and 80 micrograms i.v.), an indirectly acting sympathomimetic amine. The pressor effect of norepinephrine was not changed by 2 mg of SKF64139, while those of methoxamine and tyramine were significantly reduced. The dose-response curve to exogenous norepinephrine was also evaluated following blockade of norepinephrine uptake in the nerve endings using 0.25 mg desipramine i.v. This dose of desipramine had no effect on blood pressure increase induced by methoxamine. In rats pretreated with the neuronal uptake inhibitor desipramine in a dose that did not affect alpha-adrenoceptors, SKF64139 significantly decreased the pressor responses to norepinephrine. Increasing the dose of SKF64139 to 8 mg i.v. resulted in a significant fall in base-line blood pressure and in a blunted blood pressure response to norepinephrine. These data demonstrate that in vivo the PNMT inhibitor SKF64139 blocks alpha-adrenoceptors and inhibits neuronal uptake. The alpha-adrenoceptor blocking properties of SKF65139 are masked by simultaneous blockade of norepinephrine uptake when agonists with affinity for the uptake system are used. These findings need to be taken into account when interpreting cardiovascular effects of the PNMT inhibitor SKF64139.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to assess whether the administration of a calcium entry blocker can prevent the acute blood pressure rise induced by cigarette smoking. Seven male habitual smokers were included. After 45 min of equilibration, they took in randomized single-blind fashion at a 1 week interval either a placebo or nifedipine, 10 mg p.o. Thirty minutes thereafter, the subjects smoked within 10 min two cigarettes containing 1.4 mg of nicotine each. In addition to heart rate and skin blood flow (laser Doppler method), blood pressure of the median left finger was monitored continuously for 100 min using a noninvasive device (Finapres). Nifedipine induced an increase in skin blood flow that was not influenced by smoking. This skin blood flow response was observed although nifedipine had by itself no effect on systemic blood pressure. The calcium antagonist markedly attenuated the blood pressure rise induced by cigarette smoking. However, it tended to accentuate the heart rate acceleration resulting from inhalation of nicotine-containing smoke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

S100A1 is a Ca(2+)-binding protein and predominantly expressed in the heart. We have generated a mouse line of S100A1 deficiency by gene trap mutagenesis to investigate the impact of S100A1 ablation on heart function. Electrocardiogram recordings revealed that after beta-adrenergic stimulation S100A1-deficient mice had prolonged QT, QTc and ST intervals and intraventricular conduction disturbances reminiscent of 2 : 1 bundle branch block. In order to identify genes affected by the loss of S100A1, we profiled the mutant and wild type cardiac transcriptomes by gene array analysis. The expression of several genes functioning to the electrical activity of the heart were found to be significantly altered. Although the default prediction would be that mRNA and protein levels are highly correlated, comprehensive immunoblot analyses of salient up- or down-regulated candidate genes of any cellular network revealed no significant changes on protein level. Taken together, we found that S100A1 deficiency results in cardiac repolarization delay and alternating ventricular conduction defects in response to sympathetic activation accompanied by a significantly different transcriptional regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the functional role of different alpha1-adrenergic receptor (alpha1-AR) subtypes in vivo, we have applied a gene targeting approach to create a mouse model lacking the alpha1b-AR (alpha1b-/-). Reverse transcription-PCR and ligand binding studies were combined to elucidate the expression of the alpha1-AR subtypes in various tissues of alpha1b +/+ and -/- mice. Total alpha1-AR sites were decreased by 98% in liver, 74% in heart, and 42% in cerebral cortex of the alpha1b -/- as compared with +/+ mice. Because of the large decrease of alpha1-AR in the heart and the loss of the alpha1b-AR mRNA in the aorta of the alpha1b-/- mice, the in vivo blood pressure and in vitro aorta contractile responses to alpha1-agonists were investigated in alpha1b +/+ and -/- mice. Our findings provide strong evidence that the alpha1b-AR is a mediator of the blood pressure and the aorta contractile responses induced by alpha1 agonists. This was demonstrated by the finding that the mean arterial blood pressure response to phenylephrine was decreased by 45% in alpha1b -/- as compared with +/+ mice. In addition, phenylephrine-induced contractions of aortic rings also were decreased by 25% in alpha1b-/- mice. The alpha1b-AR knockout mouse model provides a potentially useful tool to elucidate the functional specificity of different alpha1-AR subtypes, to better understand the effects of adrenergic drugs, and to investigate the multiple mechanisms involved in the control of blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that β arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixteen patients with refractory hypertension were submitted to vigorous sodium depletion while cardiovascular homeostasis was monitored with measurements of hormonal and hemodynamic parameters and repeat saralasin tests. This regimen resulted in a negative sodium balance by an average of 300 mEq. The loss of sodium closely correlated to the decrease of body weight (r = 0.70, p less than 0.005). Blood pressure (BP) decreased from 176/166 +/- 8/3 to 155/109 +/-6/3 mm Hg. There was a significant correlation between percent increments in plasma renin activity (PRA) and the rise in plasma norepinephrine (r = 0.68, p less than 0.05) and a close negative correlation between percent increase in PRA and the ratio of fall in mean blood pressure (MAP) per unit of weight loss (r = -0.73, p less than 0.005). Thus, patients with the least percent increase in PRA demonstrated the greatest fall in BP per unit of weight loss, indicating that relative rather than absolute elevation of renin may be the factor limiting antihypertensive efficacy of sodium depletion. Sodium depletion induced increase in peripheral resistance and decrease in cardiac output, both mostly attributable to relative hyperreninemia. Indeed, the adverse hemodynamic changes were reversed by angiotensin inhibition, during which BP normalized. It is concluded that vigorous sodium depletion complemented by angiotensin blockade or suppression with sympatholytic agents improves management of otherwise refractory hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of vasopressin released during Finnish sauna on blood pressure, heart rate and skin blood flow was investigated in 12 healthy volunteers. Exposure to the hot air decrease body weight by 0.6 to 1.25 kg (mean = 0.8 kg, P less than 0.001). One hour after the end of the sauna sessions, plasma vasopressin was higher (1.7 +/- 0.2 pg/ml, P less than 0.01 mean +/- SEM) than before the sauna (1.0 +/- 0.1 pg/ml). No simultaneous change in plasma osmolality, plasma renin activity, plasma norepinephrine, epinephrine, cortisol, aldosterone, beta-endorphin and metenkephalin levels was observed. Despite the slight sauna-induced elevation in circulating vasopressin, intravenous injection of the specific vascular vasopressin antagonist d(CH2)5Tyr(Me)AVP (5 micrograms/kg) 1 h after the sauna had no effect on blood pressure, heart rate or skin blood flow. These data suggest that vasopressin released into the circulation during a sauna session reaches concentrations which are not high enough to interfere directly with vascular tone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phan-Hug F, Thurneysen E, Theintz G, Ruffieux C, Grouzmann E. Impact of videogame playing on glucose metabolism in children with type 1 diabetes. Time spent playing videogames (VG) occupies a continually increasing part of children's leisure time. They can generate an important state of excitation, representing a form of mental and physical stress. This pilot study aimed to assess whether VG influences glycemic balance in children with type 1 diabetes. Twelve children with type 1 diabetes were subjected to two distinct tests at a few weeks interval: (i) a 60-min VG session followed by a 60-min rest period and (ii) a 60-min reading session followed by a 60-min rest period. Heart rate, blood pressure, glycemia, epinephrine (E), norepinephrine (NE), cortisol (F), and growth hormone (GH) were measured at 30 min intervals from -60 to +120 min. Non-parametric Wilcoxon tests for paired data were performed on Δ-values computed from baseline (0 min). Rise in heart rate (p = 0.05) and NE increase (p = 0.03) were shown to be significantly higher during the VG session when compared to the reading session and a significant difference of Δ-glycemic values was measured between the respective rest periods. This pilot study suggests that VG playing could induce a state of excitation sufficient to activate the sympathetic system and alter the course of glycemia. Dietary and insulin dose recommendations may be needed to better control glycemic excursion in children playing VG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the sympathetic activation elicited by a mental stress on insulin sensitivity and energy expenditure (VO(2)) were studied in 11 lean and 8 obese women during a hyperinsulinemic-euglycemic clamp. Six lean women were restudied under nonselective beta-adrenergic blockade with propranolol to determine the role of beta-adrenoceptors in the metabolic response to mental stress. In lean women, mental stress increased VO(2) by 20%, whole body glucose utilization ([6,6-(2)H(2)]glucose) by 34%, and cardiac index (thoracic bioimpedance) by 25%, whereas systemic vascular resistance decreased by 24%. In obese women, mental stress increased energy expenditure as in lean subjects, but it neither stimulated glucose uptake nor decreased systemic vascular resistance. In the six lean women who were restudied under propranolol, the rise in VO(2), glucose uptake, and cardiac output and the decrease in systemic vascular resistance during mental stress were all abolished. It is concluded that 1) in lean subjects, mental stress stimulates glucose uptake and energy expenditure and produces vasodilation; activation of beta-adrenoceptors is involved in these responses; and 2) in obese patients, the effects of mental stress on glucose uptake and systemic vascular resistance, but not on energy expenditure, are blunted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pheochromocytoma (PHEO) and paraganglioma (PGL) are catecholamine-producing neuroendocrine tumors that arise respectively inside or outside the adrenal medulla. Several reports have shown that adrenal glucocorticoids (GC) play an important regulatory role on the genes encoding the main enzymes involved in catecholamine (CAT) synthesis i.e. tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). To assess the influence of tumor location on CAT metabolism, 66 tissue samples (53 PHEO, 13 PGL) and 73 plasma samples (50 PHEO, 23 PGL) were studied. Western blot and qPCR were performed for TH, DBH and PNMT expression. We found a significantly lower intra-tumoral concentration of CAT and metanephrines (MNs) in PGL along with a downregulation of TH and PNMT at both mRNA and protein level compared with PHEO. However, when PHEO were partitioned into noradrenergic (NorAd) and mixed tumors based on an intra-tumoral CAT ratio (NE/E >90%), PGL and NorAd PHEO sustained similar TH, DBH and PNMT gene and protein expression. CAT concentration and composition were also similar between NorAd PHEO and PGL, excluding the use of CAT or MNs to discriminate between PGL and PHEO on the basis of biochemical tests. We observed an increase of TH mRNA concentration without correlation with TH protein expression in primary cell culture of PHEO and PGL incubated with dexamethasone during 24 hours; no changes were monitored for PNMT and DBH at both mRNA and protein level in PHEO and PGL. Altogether, these results indicate that long term CAT synthesis is not driven by the close environment where the tumor develops and suggest that GC alone is not sufficient to regulate CAT synthesis pathway in PHEO/PGL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Diagnosis of pheochromocytoma (PC) is based on a combination of clinical suspicion, finding an adrenal mass, increased plasma, and urine concentrations of catecholamine metabolites and is finally confirmed with histopathology. In human medicine, it is controversial whether biochemically testing plasma is superior to testing urine. OBJECTIVES: To measure urinary and plasma catecholamines and metanephrines in healthy dogs, dogs with PC, hypercortisolism (HC), and nonadrenal diseases (NAD) and to determine the test with the best diagnostic performance for dogs with PC. ANIMALS: Seven PC dogs, 10 dogs with HC, 14 dogs with NAD, 10 healthy dogs. METHODS: Prospective diagnostic clinical study. Urine and heparin plasma samples were collected and stored at -80°C before analysis using high-pressure liquid chromatography (HPLC) coupled to electrochemical detection or tandem mass spectrometry were performed. Urinary variables were expressed as ratios to urinary creatinine concentration. RESULTS: Dogs with PC had significantly higher urinary normetanephrine and metanephrine : creatinine ratios and significantly higher plasma-total and free normetanephrine and plasma-free metanephrine concentrations compared to the 3 other groups. There were no overlapping results of urinary normetanephrine concentrations between PC and all other groups, and only one PC dog with a plasma normetanephrine concentration in the range of the dogs with HC and NAD disease. Performances of total and free plasma variables were similar. Overlap of epinephrine and norepinephrine results between the groups was large with both urine and plasma. CONCLUSION AND CLINICAL IMPORTANCE: Measurement of normetanephrine is the preferred biochemical test for PC and urine was superior to plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dysfunction of the dopaminergic system in brain is involved in several pathological conditions such as Parkinson’s disease and depression. 2β-Carbomethoxy-3β-(4-[18F] fluorophenyl)tropane ([18F]CFT) and 6-[18F]fluoro-L-dopa ([18F]FDOPA) are tracers for imaging the dopaminergic function with positron emission tomography (PET). Peripheral uptake of [18F]FDOPA is also used in the localization and diagnosis of neuroendocrine tumors. [18F]FDOPA and [18F]CFT can be synthesized by electrophilic fluorodestannylation. However, the specific radioactivity (SA) in the electrophilic fluorination is low with traditional synthetic methods. In this study, [18F]FDOPA and [18F]CFT were synthesized using post-target-produced [18F]F2 as an electrophilic fluorination agent. With this method, tracers are produced with sufficient SA for neuroreceptor studies. Specific aims in this study were to replace Freon-11 in the production of [18F]FDOPA due to the ozone depleting properties of this solvent, to determine pharmacological specificity and selectivity of [18F]CFT with respect to monoamine transporters, and to compare the ability of these tracers to reflect the degree of nigral neuronal loss in rats in which the dopaminergic system in the brain had been unilaterally destroyed by 6- OHDA. Post-target-produced [18F]F2 was successfully used in the production of [18F]FDOPA and [18F]CFT. The SA achieved was substantially higher than in previous synthetic methods. Deuterated compounds, CD2Cl2, CDCl3 and C3D6O, were found to be suitable solvents for replacing Freon-11. Both [18F]FDOPA and [18F]CFT demonstrated nigrostriatal dopaminergic hypofunction and correlated with the number of nigral dopaminergic neurons in the 6-OHDA lesioned rat. However, the dopamine transporter (DAT) tracer [18F]CFT was more sensitive than the dopamine synthesis tracer [18F]FDOPA in detecting these defects because of the higher non-specific uptake of [18F]FDOPA. [18F]CFT can also be used for imaging the norepinephrine transporter (NET) because of the specific uptake into the locus coeruleus. The observation that [18F]CFT exhibits specific uptake in the pancreas warrants further studies in humans with respect to potential utility in pancreatic imaging