904 resultados para NONIONIC SURFACTANT
Resumo:
This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil
column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to
be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing
agent for removing As even from soil with high Fe content.
Resumo:
We report a seedless synthetic method of gold octahedral nanoparticles in an aqueous phase. Eight facets with {111} crystalline structures of octahedral nanoparticles could be formed in an aqueous medium when the gold salt was reduced by ascorbic acid at room temperature in the presence of cetyltrimethylammonium bromide as a shape-inducing agent, and hydrogen peroxide as a reaction promoter. The growth kinetics and surface crystalline structures were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy.
Resumo:
An environment friendly arsenic removal technique from contaminated soil with high iron content has been studied. A natural surfactant extracted from soapnut fruit, phosphate solution and their mixture was used separately as extractants. The mixture was most effective in desorbing arsenic, attaining above 70 % efficiency in the pH range of 4–5. Desorption kinetics followed Elovich model. Micellar solubilization by soapnut and arsenic exchange mechanism by phosphate are the probable mechanisms behind arsenic desorption. Sequential extraction reveals that the mixed soapnut–phosphate system is effective in desorbing arsenic associated with amphoteric–Fe-oxide forms. No chemical change to the wash solutions was observed by Fourier transform-infrared spectra. Soil:solution ratio, surfactant and phosphate concentrations were found to affect the arsenic desorption process. Addition of phosphate boosted the performance of soapnut solution considerably. Response surface methodology approach predicted up to 80 % desorption of arsenic from soil when treated with a mixture of ≈1.5 % soapnut, ≈100 mM phosphate at a soil:solution ratio of 1:30.
Resumo:
Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e. g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 mu M to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au-0 atoms, leading to nucleation growth of the AuNPs.
Employment of the side product of biodiesel production in the formation of surfactant like molecules
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.
Resumo:
We report on a new class of nonionic, photosensitive surfactants consisting of a polar di(ethylene oxide) head group attached to an alkyl spacer of between two and eight methylene groups, coupled through an ether linkage to an azobenzene moiety. Structural changes associated with the interconversion of the azobenzene group between its cis and trans forms as mediated by the wavelength of an irradiating light source cause changes in the surface tension and self-assembly properties. Differences in saturated surface tensions (surface tension at concentrations above the CMC) were as high as 14.4 mN/m under radiation of different wavelengths. The qualitative behavior of the surfactants changed as the spacer length changed, attributed to the different orientations adopted by the different surfactants depending on their isomerization states, as revealed by neutron reflection studies. The self-assembly of these photosensitive surfactants has been investigated by light scattering, small angle neutron scattering, and cryo-TEM under different illuminations. The significant change in the self-assembly in response to different illumination conditions was attributed to the sign change in Gaussian rigidity, which originated from the azobenzene photoisomerization.
Resumo:
Gel diagrams based on tube inversion and oscillatory rheometry are reported for Pluronic copolymers F127 (E98P67E98) and P123 (E21P67E21) in mixtures with anionic surfactant sodium dodecyl sulfate (SDS). Total concentrations (e, SDS+copolymer) were as high as 50 wt% with mole ratios SDS/copolymer (mr) in the ranges 1-5 (F127) a lid 1-7 (PI 23). Temperatures were its high as 90 degrees C. Determination of the temperature dependences of the dynamic moduli served to confirm the gel boundaries from tube inversion and to reveal the high elastic moduli of the gels, e.g., compared at corn parable positions in the gel phase, a 50 wt% SDS/P123 wit h mr = 7 had G' three times that of a corresponding gel of P123 alone. Sin all-angle X-ray scattering (SAX S) was used to show that the structures of all the SDS/F127 gels were bee and that the structures of the SDS/P123 gels with mr = I were either fcc(c = 30 wt%) or hex (c = 40 wt%). Assignment of structures to SDS/P123 gels with values of mr in the range 3-7 was more difficult, as high-order scattering peaks Could be very weak, and at the higher values of c and mr, the SAXS peaks included multiple reflections.
Resumo:
The interactions of sodium dodecyl sulfate (SDS) with poly(ethylene oxide)/poly(alkylene oxide) (E/A) block copolymers are explored in this study: With respect to the specific compositional characteristics of the copolymer, introduction of SDS can induce fundamentally different effects to the self-assembly behavior of E/A copolymer solutions. In the case of the E18B10-SDS system (E = poly(ethylene oxide) and B = poly(butylene oxide)) development of large surfactant-polymer aggregates was observed. In the case of B20E610-SDS, B12E227B12-SDS, E40B10E40-SDS, E19P43E19-SDS (P = poly(propylene oxide)), the formation of smaller particles compared to pure polymeric micelles points to micellar suppression induced by the ionic surfactant. This effect can be ascribed to a physical binding between the hydrophobic block of unassociated macromolecules and the non-polar tail of the surfactant. Analysis of critical micelle concentrations (cmc*) of polymer-surfactant aqueous solutions within the framework of regular solution theory for binary surfactants revealed negative deviations from ideal behavior for E40B10E40-SDS and E19P43E19-SDS, but positive deviations for E18B10-SDS. Ultrasonic studies performed for the E19P43E19-SDS system enabled the identification of three distinct regions, corresponding to three main steps of the complexation; SDS absorption to the hydrophobic backbone of polymer, development of polymer-surfactant complexes and gradual breakdown of the mixed aggregates. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The recovery of lactoferrin and lactoperoxidase from sweet whey was studied using colloidal gas aphrons (CGAs), which are surfactant-stabilized microbubbles (10-100 mum). CGAs are generated by intense stirring (8000 rpm for 10 min) of the anionic surfactant AOT (sodium bis-2-ethylhexyl sulfosuccinate). A volume of CGAs (10-30 mL) is mixed with a given volume of whey (1 - 10 mL), and the mixture is allowed to separate into two phases: the aphron (top) phase and the liquid (bottom) phase. Each of the phases is analyzed by SDS-PAGE and surfactant colorimetric assay. A statistical experimental design has been developed to assess the effect of different process parameters including pH, ionic strength, the concentration of surfactant in the CGAs generating solution, the volume of CGAs and the volume of whey on separation efficiency. As expected pH, ionic strength and the volume of whey (i.e. the amount of total protein in the starting material) are the main factors influencing the partitioning of the Lf(.)Lp fraction into the aphron phase. Moreover, it has been demonstrated that best separation performance was achieved at pH = 4 and ionic strength = 0.1 mol/L i.e., with conditions favoring electrostatic interactions between target proteins and CGAs (recovery was 90% and the concentration of lactoferrin and lactoperoxidase in the aphron phase was 25 times higher than that in the liquid phase), whereas conditions favoring hydrophobic interactions (pH close to pI and high ionic strength) led to lower performance. However, under these conditions, as confirmed by zeta potential measurements, the adsorption of both target proteins and contaminant proteins is favored. Thus, low selectivity is achieved at all of the studied conditions. These results confirm the initial hypothesis that CGAs act as ion exchangers and that the selectivity of the process can be manipulated by changing main operating parameters such as type of surfactant, pH and ionic strength.
Resumo:
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M-CTAB/M-TP) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M-CTAB/M-TP = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The introduction of ionic single-tailed surfactants to aqueous solutions of EO18BO10 [EO = poly(ethylene oxide), BO = poly(1,2-butylene oxide), subscripts denote the number of repeating units] leads to the formation of vesicles, as probed by laser scanning confocal microscopy. Dynamic light scattering showed that the dimensions of these aggregates at early stages of development do not depend on the sign of the surfactant head group charge. Small-angle X-ray scattering (SAXS) analysis indicated the coexistence of smaller micelles of different sizes and varying polymer content in solution. In strong contrast to the dramatic increase of size of dispersed particles induced by surfactants in dilute solution, the d-spacing of corresponding mesophases reduces monotonically upon increasing surfactant loading. This effect points to the suppression of vesicles as a consequence of increasing ionic strength in concentrated solutions. Maximum enhancements of storage modulus and thermal stability of hybrid gels take place at different compositions, indicating a delicate balance between the number and size of polymer-poor aggregates (population increases with surfactant loading) and the number and size of polymer−surfactant complexes (number and size decrease in high surfactant concentrations).