988 resultados para NITROUS-OXIDE EMISSIONS
Resumo:
To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Resumo:
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO(2) supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH(4)) flux, direct CO(2) and CH(4) fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO(2) concentrations ranged from 6,491 to 14,976 mu atm and directly-measured stream CO(2) outgassing flux was 5,994 +/- A 677 g C m(-2) y(-1) of stream surface. Stream pCH(4) concentrations ranged from 291 to 438 mu atm and measured stream CH(4) outgassing flux was 987 +/- A 221 g C m(-2) y(-1). Despite high flux rates from the stream surface, the small area of stream itself (970 m(2), or 0.007% of watershed area) led to small directly-measured annual fluxes of CO(2) (0.44 +/- A 0.05 g C m(2) y(-1)) and CH(4) (0.07 +/- A 0.02 g C m(2) y(-1)) per unit watershed land area. Measured fluvial export of DIC (0.78 +/- A 0.04 g C m(-2) y(-1)), DOC (0.16 +/- A 0.03 g C m(-2) y(-1)) and coarse plus fine particulate C (0.001 +/- A 0.001 g C m(-2) y(-1)) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m(-2) y(-1) as CO(2) outgassing, 11.29 g C m(-2) y(-1) as fluvial DIC and 0.64 g C m(-2) y(-1) as fluvial DOC. Outgassing fluxes were somewhat lower than the 40-50 g C m(-2) y(-1) reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 +/- A 147 g C m(-2) y(-1)), but total losses of C transported by water comprised up to about 20% of the +/- A 150 g C m(-2) (+/- 1.5 Mg C ha(-1)) that is exchanged annually across Amazon tropical forest canopies.
Resumo:
Solid waste of the automobile industry containing large amounts of heavy metals might affect the emission of greenhouse gases (GHG) when applied to the soil. Accumulation of inorganic chemical elements in the environment generally occurs due to human activity (industry, agriculture, mining and waste landfills). Residues from human activities may release heavy metals to the soil solution, causing toxicity to plants and other soil organisms. Heavy metals may also be adsorbed to clay minerals and/or complexed by the soil organic matter, becoming a potential source of pollutants. Not much is known about the behavior of solid wastes in tropical soil as regarded as source of greenhouse gases (GHG). The emission of GHG (CO(2), CH(4) and N(2)O) was evaluated in incubated soil samples collected in an area contaminated with a solid residue from an automobile industry. Samples were randomly collected at 0 to 0.2 m (a mix of soil and residue), 0.2 to 0.4 m (only residue) and 0.4 to 0.6 m (only soil). A contiguous uncontaminated area, cultivated with sugarcane, was also sampled following the same protocol. Canonical Discriminant Analysis and Principal Component Analysis were applied to the data to evaluate the GHG emission rates. Emission rates of GHG were greater in the samples from the contaminated than the sugarcane area, particularly high during the first days of incubation. CO(2) emissions were greater in samples collected at the upper layer for both areas, while CH(4) and N(2)O emissions were similar in all samples. The emission rates of CH(4) were the most efficient variables to differentiate contaminated and uncontaminated areas.
Resumo:
A field study was carried out to investigate the impacts of windrowed harvesting residues on denitrification, immobilisation and leaching of N-15-labelled nitrate applied at 20 kg N ha(-1) to microplots in second-rotation hoop pine (Araucaria cunninghamii) plantations of 1-3 years old in southeast Queensland, Australia. The PVC microplots were 235 mm in diameter and 150 mm. long, and driven into the 100 mm soil. There were three replications of such microplots for each of the six treatments which were areas just under and between 1-, 2- and 3-year-old windrows of harvesting residues. Based on gaseous N losses estimated by the difference between the recoveries of bromide (Br) applied at 100 kg Br ha(-1) and N-15-labelled nitrate, denitrification was highest (23% based on N-15 loss) in the areas just under the 1-year-old windrows 25 days after a simulated 75 mm rainfall and following several natural rainfall events. There was no significant difference in N-15 losses (14-17%) among the other treatments. The N-15 immobilisation rate was highest for microplots in the areas between the 1-year-old windrows and generally higher for microplots in the areas just under the windrows (30-39%) than that (26-30%) between the windrows. Direct measurement of N-15 gas emissions (N-15(2) + (N2O)-N-15) confirmed that the highest denitrification rate occurred in the microplots under the 1-year-old windrows although the gaseous N-15 loss calculated by gas emission was only about one-quarter that estimated by the N-15 mass balance method. A significant, positive linear relationship (P < 0.05) existed between the gaseous N-15 losses measured by the two methods used. The research indicates that considerable mineral N could be lost via denitrification during the critical inter-rotation period and early phase of the second rotation. However, the impacts of windrowed harvesting residues on N losses via denitrification might only last for a period of about 2 years. Published by Elsevier Science B.V.
Resumo:
A field study was conducted to investigate the fate of N-15-labelled nitrate applied at 20 kg N ha(-1) in a wet summer to microplots installed in areas under different residue management regimes in second-rotation hoop pine (Araucaria cunninghamii) plantations aged 1-3 years in south-east Queensland, Australia. PVC microplots of 235 mm diameter and 300 mm long were driven into 250 mm soil. There were three replications of each of eight treatments. These were areas just under and between 1-year-old windrows (ca. 2-3 m in width) of harvesting residues spaced 15 m apart, and with and without incorporated foliage residues (20 t DM ha(-1)); the areas just under and between 2- or 3-year-old windrows spaced 10 m apart. Only 7-29% of the added N-15 was recovered from the top 750 mm of the soil profile with the leaching loss estimated to be 70-86% over the 34-day period. The N-15 loss via denitrification was 3.7-6.3% by directly measuring the N-15 gases emitted. The microplots with the incorporated residues at the 1-year-old site had the highest N-15 loss (6.3%) as compared with the other treatments. The N-15 mass balance method together with the use of bromide (Br) tracer applied at 100 kg Br ha(-1) failed to obtain a reliable estimate of the denitrification loss. The microplots at the 1-year-old site had higher N-15 immobilisation rate (7.5-24.7%) compared with those at 2- and 3-year-old sites (2.1-3.6%). Incorporating the residues resulted in an increase in N-15 immobilisation rate (24.5-24.7%) compared with the control without the incorporated residues (8.4-14.3%). These findings suggest that climatic conditions played important roles in controlling the N-15 transformations in the wet summer season and that the residue management regimes could also significantly influence the N-15 transformations. Most of the N-15 loss occurred through leaching, but a considerable amount of the N-15 was lost through denitrification. Bromide proved to be an unsuitable tracer for monitoring the N-15 leaching and movement under the wet summer conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa
Resumo:
Organic residue application into soil alter the emission of gases to atmosphere and CO2, CH4, N2O may contribute to increase the greenhouse effect. This experiment was carried out in a restoration area on a dystrophic Ultisol (PVAd) to quantify greenhouse gas (GHG) emissions from soil under castor bean cultivation, treated with sewage sludge (SS) or mineral fertilizer. The following treatments were tested: control without N; FertMin = mineral fertilizer; SS5 = 5 t ha-1 SS (37.5 kg ha-1 N); SS10 = 10 t ha-1 SS (75 kg ha-1 N); and SS20 = 20 t ha-1 SS (150 kg ha-1 N). The amount of sludge was based on the recommended rate of N for castor bean (75 kg ha-1), the N level of SS and the mineralization fraction of N from SS. Soil gas emission was measured for 21 days. Sewage sludge and mineral fertilizers altered the CO2, CH4 and N2O fluxes. Soil moisture had no effect on GHG emissions and the gas fluxes was statistically equivalent after the application of FertMin and of 5 t ha-1 SS. The application of the entire crop N requirement in the form of SS practically doubled the Global Warming Potential (GWP) and the C equivalent emissions in comparison with FertMin treatments.
Resumo:
The objective of this project was to evaluate the in-use fuel economy and emission differences between hybrid-electric and conventional transit buses for the Ames, Iowa transit authority, CyRide. These CyRide buses were deployed in the fall of 2010. Fuel economy was compared for the hybrid and control buses. Several older bus types were also available and were included in the analysis. Hybrid buses had the highest fuel economy for all time periods for all bus types. Hybrid buses had a fuel economy that was 11.8 percent higher than control buses overall, 12.2 percent higher than buses with model years 2007 and newer, 23.4 percent higher than model years 2004 through 2006, 10.2 percent higher than model years 1998 through 2003, 38.1 percent higher than model years 1994 through 1997, 36.8 percent higher than model years 1991 through 1993, and 36.8 percent higher for model years pre-1991. On-road emissions were also compared for three of the hybrid buses and two control buses using a portable emissions monitor. On-average, carbon dioxide, carbon monoxide, and hybrid carbon emissions were much higher for the control buses than for the hybrid buses. However, on average nitrogen oxide emissions were higher for the hybrid buses.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
Nitrous oxide (N2O) emissions were measured monthly from January to June 2010 in the aeration tank of a wastewater treatment plant (WWTP) in Southeast Brazil. Emissions were lower in summer than winter and were positively related with influent ammonium (NH4+) concentration. The average N2O emission was 1.11 kg N day-1 corresponding to 0.02% of the influent total nitrogen load. The average emission factor calculated for the population served was 2.5 lower than that proposed by the Intergovernmental Panel on Climate Change (IPCC) for inventories of N2O emissions from WWTPs with controlled nitrification and denitrification processes.
Resumo:
AbstractThis study evaluates the chemical processes responsible for the nitrous oxide (N2O) and methane (CH4) fluxes in the managed pasture (PM) and unmanaged pasture (PNM). In addition, the impact of nitrogen fertilization on the N2O and CH4 fluxes was assessed. The experiments were conducted on three farms in Alta Floresta city in the state of Mato Grosso. Both regular and intensive samples were collected from PM, PNM, and forest areas for each of the properties. The gases were sampled using static chambers in the morning. Higher N2O fluxes were recorded in the PMs, whereas the CH4 fluxes showed no influence of nitrogen fertilization in both regular and intensive samples. Low fertilizer levels resulted in low N2O emissions.
Resumo:
Tämä diplomityö on läpileikkaus kasvihuonekaasupäästöistä sekä niitä koskevista vähennystoimenpiteistä Suomessa Kioton pöytäkirjan ensimmäisen sopimuskauden lopussa. Työ on toteutettu kirjallisuustutkimuksena ja siihen on käytetty painettuja sekä sähköisiä lähteitä. Huoli ilmastonmuutoksesta on saanut aikaan sen, että kasvihuonekaasupäästöjä rajoitetaan tänä päivänä kansainvälisillä sopimuksilla. Vaikka kaikki suuretkaan päästäjämaat eivät ole sopimuksia ratifioineet, ovat EU-maat Suomi mukaan lukien sitoutuneet YK:n ilmastonmuutosta koskevaan puitesopimukseen ja sen noudattamiseen. Puitesopimusta tarkentavassa Kioton pöytäkirjassa EU sitoutui vähentämään kuuden eri kasvihuonekaasun kokonaispäästöjä yhteensä 8 prosenttia ajanjaksolla 2008–2012 vuoteen 1990 verrattuna. Kasvihuonekaasut, joita rajoitukset koskivat, olivat hiilidioksidi, metaani, dityppioksidi, fluorihiilivedyt, perfluorihiilivedyt ja rikkiheksafluoridi. EU:n sisäisessä taakanjaossa Suomen tavoite oli pitää päästöt vertailuvuoden 1990 tasossa ja Suomi alitti tämän noin viidellä prosentilla. Vuoden 2012 jälkeen Suomen kasvihuonekaasupäästöjen vähennystavoite on kiristynyt. Vuosille 2013–2020 Suomen tavoite on vähentää kasvihuonekaasupäästöjä 20 prosenttia alle perusvuoden 1990 tason. Työssä tutustutaan myös keinoihin, joilla aiempien ja tulevien päästöjenvähennystavoitteiden saavuttaminen on mahdollista. Näitä keinoja on mm. erilaisten biopolttoaineiden sekoittaminen fossiilisten polttoaineiden sekaan, energiatehokkuuden parantaminen ja biokaasun käytön lisääminen. Lisäksi työssä käsitellään eräitä merkityksellisiä käsitteitä, kuten EU:n päästökauppajärjestelmä ja hiilidioksidin talteenotto ja varastointi.
Resumo:
Les rivières reçoivent de l'azote de leurs bassins versants et elles constituent les derniers sites de transformations des nutriments avant leur livraison aux zones côtières. Les transformations de l’azote inorganique dissous en azote gazeux sont très variables et peuvent avoir un impact à la fois sur l’eutrophisation des côtes et les émissions de gaz à effet de serre à l’échelle globale. Avec l’augmentation de la charge en azote d’origine anthropique vers les écosystèmes aquatiques, les modèles d’émissions de gaz à effet de serre prédisent une augmentation des émissions d’oxyde nitreux (N2O) dans les rivières. Les mesures directes de N2O dans le Lac Saint-Pierre (LSP), un élargissement du Fleuve Saint-Laurent (SLR) indiquent que bien qu’étant une source nette de N2O vers l'atmosphère, les flux de N2O dans LSP sont faibles comparés à ceux des autres grandes rivières et fleuves du monde. Les émissions varient saisonnièrement et inter-annuellement à cause des changements hydrologiques. Les ratios d’émissions N2O: N2 sont également influencés par l’hydrologie et de faibles ratios sont observés dans des conditions de débit d'eau plus élevée et de charge en N élevé. Dans une analyse effectuée sur plusieurs grandes rivières, la charge hydraulique des systèmes semble moduler la relation entre les flux de N2O annuels et les concentrations de nitrate dans les rivières. Dans SLR, des tapis de cyanobactéries colonisant les zones à faible concentration de nitrate sont une source nette d’azote grâce à leur capacité de fixer l’azote atmosphérique (N2). Étant donné que la fixation a lieu pendant le jour alors que les concentrations d'oxygène dans la colonne d'eau sont sursaturées, nous supposons que la fixation de l’azote est effectuée dans des micro-zones d’anoxie et/ou possiblement par des diazotrophes hétérotrophes. La fixation de N dans les tapis explique le remplacement de près de 33 % de la perte de N par dénitrification dans tout l'écosystème au cours de la période d'étude. Dans la portion du fleuve Hudson soumis à la marée, la dénitrification et la production de N2 est très variable selon le type de végétation. La dénitrification est associée à la dynamique en oxygène dissous particulière à chaque espèce durant la marée descendante. La production de N2 est extrêmement élevée dans les zones occupées par les plantes envahissantes à feuilles flottantes (Trapa natans) mais elle est négligeable dans la végétation indigène submergée. Une estimation de la production de N2 dans les lits de Trapa durant l’été, suggère que ces lits représentent une zone très active d’élimination de l’azote. En effet, les grands lits de Trapa ne représentent que 2,7% de la superficie totale de la portion de fleuve étudiée, mais ils éliminent entre 70 et 100% de l'azote total retenu dans cette section pendant les mois d'été et contribuent à près de 25% de l’élimination annuelle d’azote.
Resumo:
L’oxyde nitreux (N2O), un puissant gaz à effet de serre (GES) ayant plus de 300 fois le potentiel de réchauffement du dioxyde de carbone (CO2), est produit par des processus microbiens du cycle de l’azote (N). Bien que les eaux de surface continentales soient reconnues comme des sites actifs de transformations de l’azote, leur intégration dans les budgets globaux de N2O comporte de nombreuses incertitudes, dont l’absence des lacs dans ces modèles. Le biome boréal est caractérisé par une des plus grandes densités d’eaux douces au monde, pourtant aucune évaluation exhaustive des émissions aquatiques de N2O n’a à date été conduite dans cette région. Dans la présente étude, nous avons mesuré les concentrations de N2O à travers une large gamme de lacs, rivières, et étangs, dans quatre régions boréales du Québec (Canada), et nous avons calculé les flux eau-air résultants. Les flux nets fluctuent entre -23.1 et 177.9 μmol m-2 J-1, avec une grande variabilité inter-système, inter-régionale, et saisonnière. Étonnamment, 40% des systèmes échantillonnés agissaient en tant que puits de N2O durant l’été, et le réseau d’eaux de surfaces d’une des régions était un net consommateur de N2O. Les concentrations maximales de N2O ont été mesurées en hiver dû à l’accumulation de ce gaz sous la glace. Nous avons estimé que l’émission qui en résulte lors de la fonte des glaces représente 20% des émissions annuelles des eaux douces. Parmi les types d’eaux douces échantillonnées, les lacs sont les principaux responsables du flux aquatique net (jusqu’à 90%), et doivent donc être intégrés dans les budgets globaux de N2O. En se basant sur les données empiriques de la littérature, nous avons éstimé l’émission globale de N2O des eaux douces à 0.78 Tg N (N2O) an-1. Ce chiffre est influencé par les émissions des régions de hautes latitudes (tel que le biome boréal) dont les flux nets varient de positif à négatif constituant -9 à 27 % du total.