932 resultados para NITRIC-OXIDE SCAVENGERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic vasodilator mediating postexercise hypotension (PEH) is poorly understood. Recent evidence suggests an exercise-induced reliance on pro-oxidant-stimulated vasodilation in normotensive young human subjects, but the role in the prehypertensive state is not known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were undertaken to determine if nitric oxide (NO) plays a role in regulation of basal blood flow in the oral cavity of pentobarbital anesthetized cats and, if so, to quantify this effect using dose-response relationships. Blood flow was continuously measured from the surface of the tongue and mandibular gingiva (laser-Doppler flowmetry) and from the lingual artery (ultrasonic flowmetry). Cardiovascular parameters also were recorded. Administration of the nonselective inhibitor of nitric oxide synthase (NOS), L-NAME (0.08-20 mg/kg i.v.), produced a dose-related increase of blood pressure associated with decreases of blood flow at all three measurement sites. Maximal blood flow depression of 50-60% was seen 30-60 min after administration of 1.25 mg/kg of L-NAME. D-NAME (1.25 mg/kg i.v.) was inactive at all sites. Subsequent administration of L-arginine partially reversed effects of L-NAME in the lingual artery and tongue, but not in the gingival circulation. The neuronally selective NOS inhibitor, 7-nitroindazole (7-NI, 30 mg/kg i.p.), was devoid of effect on any of the measured parameters. These results suggest that endothelial (but not neuronally derived) NO plays an important role in control of basal blood flow in oral tissues of the cat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Enhanced oxidative stress is involved in mediating the endothelial dysfunction associated with hypertension. The aim of this study was to investigate the relative contributions of pro-oxidant and anti-oxidant enzymes to the pathogenesis of endothelial dysfunction in genetic hypertension. Methods: Dilator responses to endothelium-dependent and endothelium-independent agents such as acetylcholine (ACh) and sodium nitroprusside were measured in the thoracic aortas of 28-week-old spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar Kyoto rats (WKY). The activity and expression (mRNA and protein levels) of endothelial nitric oxide synthase (eNOS), p22-phox, a membrane-bound component of NAD(P)H oxidase, and antioxidant enzymes, namely, superoxide dismutases (CuZn- and Mn-SOD), catalase and glutathione peroxidase (GPx), were also investigated in aortic rings. Results: Relaxant responses to ACh were attenuated in phenylephrine-precontracted SHR aortic rings, despite a 2-fold increase in eNOS expression and activity. Although the activity and/or expression of SODs, NAD(P)H oxidase (p22-phox) and GPx were elevated in SHR aorta, catalase activity and expression remained unchanged compared to WKY. Pretreatment of SHR aortic rings with the inhibitor of xanthine oxidase, allopurinol, and the inhibitor of cyclooxygenase, indomethacin, significantly potentiated ACh-induced relaxation. Pretreatment of SHR rings with catalase and Tiron, a superoxide anion (O) scavenger, increased the relaxant responses to the levels observed in WKY rings whereas pyrogallol, a O -generator, abolished relaxant responses to ACh. Conclusion: These data demonstrate that dysregulation of several enzymes, resulting in oxidative stress, contributes to the pathogenesis of endothelial dysfunction in SHR and indicate that the antioxidant enzyme catalase is of particular importance in the reversal of this defect. © 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.