966 resultados para NESTED PCR
Resumo:
Rio Negro virus (RNV) (Venezuelan equine encephalitis subtype VI) circulates only in Argentina; in northern provinces, isolates have been obtained from mosquitoes and rodents since 1980 and have been associated with acute febrile illness in humans. However, no studies of RNV have been performed in the central area of the country. We carried out molecular and serological detection of RNV in Córdoba, a province of the central part of the country, in mosquitoes and humans, respectively. One mosquito pool tested positive for alphavirus RNA by reverse transcriptase-nested polymerase chain reaction (RT-nested PCR). Subsequent sequencing determined that this alphavirus grouped with RNV. Serological studies detected antibodies to RNV in one human serum sample, which was obtained during the same period that RNV was detected using the aforementioned molecular methods. This is the first report of RNV circulation in the central area of Argentina, indicating an expansion of its original distribution. These results highlight the importance of strengthening surveillance procedures in endemic areas, as well as in new regions where RNV may emerge.
Resumo:
The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.
Resumo:
The Global Program for the Elimination of Lymphatic Filariasis (GPELF) aims to eliminate this disease by the year 2020. However, the development of more specific and sensitive tests is important for the success of the GPELF. The present study aimed to standardise polymerase chain reaction (PCR)-based systems for the diagnosis of filariasis in serum and urine. Twenty paired biological urine and serum samples from individuals already known to be positive for Wuchereria bancrofti were collected during the day. Conventional PCR and semi-nested PCR assays were optimised. The detection limit of the technique for purified W. bancrofti DNA extracted from adult worms was 10 fg for the internal systems (WbF/Wb2) and 0.1 fg by using semi-nested PCR. The specificity of the primers was confirmed experimentally by amplification of 1 ng of purified genomic DNA from other species of parasites. Evaluation of the paired urine and serum samples by the semi-nested PCR technique indicated only two of the 20 tested individuals were positive, whereas the simple internal PCR system (WbF/Wb2), which has highly promising performance, revealed that all the patients were positive using both samples. This study successfully demonstrated the possibility of using the PCR technique on urine for the diagnosis of W. bancrofti infection.
Resumo:
The identification and characterisation of Cryptosporidiumgenotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity ofCryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays forCryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time.
Resumo:
For a better understanding of the complex coevolutionary processes between hosts and parasites, accurate identification of the actors involved in the interaction is of fundamental importance. Blood parasites of the Order Haemosporidia, responsible for malaria, have become the focus of a broad range of studies in evolutionary biology. Interestingly, molecular-based studies on avian malaria have revealed much higher species diversity than previously inferred with morphology. Meanwhile, studies on bat haemosporidian have been largely neglected. In Europe, only one genus (Polychromophilus) and two species have been morphologically described. To evaluate the presence of potential cryptic species and parasite prevalence, we undertook a molecular characterization of Polychromophilus in temperate zone bats. We used a nested-PCR approach on the cytochrome b mitochondrial gene to detect the presence of parasites in 237 bats belonging to four different species and in the dipteran bat fly Nycteribia kolenatii, previously described as being the vector of Polychromophilus. Polychromophilus murinus was found in the four bat species and in the insect vector with prevalence ranging from 4% for Myotis myotis to 51% for M. daubentoni. By sequencing 682 bp, we then investigated the phylogenetic relationships of Polychromophilus to other published malarial lineages. Seven haplotypes were found, all very closely related, suggesting the presence of a single species in our samples. These haplotypes formed a well-defined clade together with Haemosporidia of tropical bats, revealing a worldwide distribution of this parasite mostly neglected by malarial studies since the 1980s.
Resumo:
Epstein-Barr virus (EBV) has been consistently associated with multiple sclerosis (MS), but whether this virus is a trigger of MS remains undetermined. Recently, EBV-infected B cells recognized by activated CD8_ T cells have been detected in the meninges of autopsied MS patients. In addition, a strong EBV-specific CD8_ T cell response in the blood of patients with MS of recent onset was reported. Here, to further explore the putative relationship between MS and EBV, we assessed the EBV-specific cellular and humoral immune responses in the blood and the cerebrospinal fluid (CSF) of patients with early MS or other neurological diseases, separated into inflammatory (IOND) and non-inflammatory (NIOND) groups. The MS non-associated neurotropic herpesvirus cytomegalovirus (CMV) served as a control. Fifty-eight study subjects were enrolled, including 44 patients (13 with early MS (onset of MS less than one year prior to the assay), 15 with IOND and 16 with NIOND) in the immunological arm of the study. The cellular immune response was investigated using a functional CFSE cytotoxic T lymphocyte (CTL) assay performed with short-term cultured EBV- or CMVspecific effector T cells from the CSF and the blood. The humoral immune response specific for these two viruses was also examined in both the blood and the CSF. The recruitment of a given virusspecific antibody in the CSF as compared to the blood was expressed as antibody indexes (AI). We found that, in the CSF of early MS patients, there was an enrichment in EBV-, but not CMV-specific, CD8_ CTL as compared to the CSF of IOND (P_ 0.003) and NIOND patients (P_0.0009), as well as compared to paired blood samples (P_0.005). Additionally, relative viral capsid antigen (VCA)-, but not EBV encoded nuclear antigen 1 (EBNA1)- or CMV-specific, AI were increased in the CSF of early MS as compared to IOND (P_0.002) or NIOND patients (P_0.008) and correlated with the EBVspecific CD8_ CTL responses in the CSF (rs_0.54, P_0.001). Fourteen additional patients were enrolled in the virological arm of the study: using semi-nested PCR, EBV-encoded nuclear RNA1 (EBER1)-a transcript expressed during all stages of EBV infection-was detected in the CSF of 2/4 early MS, but only 1/6 IOND and 0/4 NIOND patients. Altogether, our data suggest that a reactivation of EBV, but not CMV, is taking place in the central nervous system of patients with MS of recent onset. These data significantly strengthen the link between EBV and MS and may indicate a triggering role of EBV in this disease. This work was supported by grants from the Swiss National Foundation and from the Swiss Society for Multiple Sclerosis.
Resumo:
The presence of human adenoviruses in recreational water might cause disease in the population upon exposure. Human adenoviruses detected by PCR could also serve as indicators of the virological water quality. In order to assess the applicability of human adenoviruses to the evaluation of the faecal contamination in European bathing waters, a real-time quantitative PCR assay was developed for the quantification of human adenoviruses in 132 samples collected from 24 different recreational marine and freshwater sites in nine European countries.Selected samples presenting positive nested-PCR results for human adenoviruses were analyzed using quantitative PCR and 80 samples from a total of 132 produced quantitative results with mean values of 3.2x102 10 per 100 ml of water, human adenovirus 41 being the most prevalent serotype. Human adenoviruses were quantified in samples from all 15 surveillance laboratories. Statistical analysis showed no homogeneous linear relation between humanadenoviruses and E. coli, intestinal enterococci or somatic coliphages concentrations in the tested samples when considering all the data together. Significant correlations between human adenoviruses and at least one of the other indicators were observed only when data from individual Laboratories were considered. The quantification of human adenoviruses may provide complementary information in relation to the use of bacterial standards in the control of water quality in bathing water.
Resumo:
The presence of human adenoviruses in recreational water might cause disease in the population upon exposure. Human adenoviruses detected by PCR could also serve as indicators of the virological water quality. In order to assess the applicability of human adenoviruses to the evaluation of the faecal contamination in European bathing waters, a real-time quantitative PCR assay was developed for the quantification of human adenoviruses in 132 samples collected from 24 different recreational marine and freshwater sites in nine European countries.Selected samples presenting positive nested-PCR results for human adenoviruses were analyzed using quantitative PCR and 80 samples from a total of 132 produced quantitative results with mean values of 3.2x102 10 per 100 ml of water, human adenovirus 41 being the most prevalent serotype. Human adenoviruses were quantified in samples from all 15 surveillance laboratories. Statistical analysis showed no homogeneous linear relation between humanadenoviruses and E. coli, intestinal enterococci or somatic coliphages concentrations in the tested samples when considering all the data together. Significant correlations between human adenoviruses and at least one of the other indicators were observed only when data from individual Laboratories were considered. The quantification of human adenoviruses may provide complementary information in relation to the use of bacterial standards in the control of water quality in bathing water.
Resumo:
Exposure to human pathogenic viruses in recreational waters has been shown to cause disease outbreaks. In the context of Article 14 of the revised European Bathing Waters Directive 2006/7/EC (rBWD, CEU, 2006) a Europe-wide surveillance study was carried out to determine the frequency of occurrence of two human enteric viruses in recreational waters. Adenoviruses were selected based on their near-universal shedding and environmental survival, and noroviruses (NoV) selected as being the most prevalent gastroenteritis agent worldwide. Concentration of marine and freshwater samples was done by adsorption/elution followed by molecular detection by (RT)-PCR. Out of 1410 samples, 553 (39.2%) were positive for one or more of the target viruses. Adenoviruses, detected in 36.4% of samples, were more prevalent than noroviruses (9.4%), with 3.5% GI and 6.2% GII, some samples being positive for both GI and GII. Of 513 human adenovirus-positive samples, 63 (12.3%) were also norovirus-positive, whereas 69 (7.7%) norovirus-positive samples were adenovirus-negative. More freshwater samples than marine water samples were virus-positive. Out of a small selection of samples tested for adenovirus infectivity, approximately one-quarter were positive. Sixty percent of 132 nested-PCR adenovirus-positive samples analysed by quantitative PCR gave a mean value of over 3000 genome copies per L of water. The simultaneous detection of infectious adenovirus and of adenovirus and NoV by (RT)PCR suggests that the presence of infectious viruses in recreational waters may constitute a public health risk upon exposure. These studies support the case for considering adenoviruses as an indicator of bathing water quality.
Resumo:
In this study we tested whether communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of maize (Zea mays L.) were affected by soil tillage practices (plowing, chiseling, and no-till) in a long-term field experiment carried out in Tanikon (Switzerland). AMF were identified in the roots using specific polymerase chain reaction (PCR) markers that had been developed for the AMF previously isolated from the soils of the studied site. A nested PCR procedure with primers of increased specificity (eukaryotic, then, fungal, then AMF species or. species-grouop specific) was used. Sequencing of amplified DNA confirmed that the DNA obtained from the maize roots was of AMF origin. Presence of particular AMF species or species-group was scored as a presence of a DNA product after PCR with specific primers. We also used single-strand conformation polymorphism analysis (SSCP), of amplified DNA samples to-check if the amplification of the DNA from maize roots matched the expected profile for a particular AMF isolate with a given specific primer pair. Presence of the genus Scutellospora, in maize roots was strongly reduced in plowed and chiseled soils. Fungi from the suborder Glomineae were more prevalent colonizers of maize roots growing in plowed soils, but were also present in the roots from other tillage treatments. These changes in community of AMF colonizing maize roots might be due to (1), the differences in tolerance to the tillage-induced disruption of the hyphae among the different AMF species, (2) changes in nutrient content of the soil, (3) changes in microbial activity, or (4) changes in weed populations in response to soil tillage. This is the first report on community composition of AMF in the roots of a field-grown crop plant (maize) as affected by soil tillage.
Resumo:
Fungi are divided in 3 groups in the field of medical mycology. The dermatophytes are filamentous fungi able to grow on keratinized tissues from human or animals. They are the main cause of superficial and cutaneous mycoses of the skin and its appendix (hair and nail). The yeasts, or dimorphic fungi, can be responsible of diverse types of infections (superficial to deep mycoses). The moulds include all Non-dermatophyte Filamentous Fungi (NDF). In medical mycology, the most representative moulds are Aspergillus spp., Fusarium spp. and Mucor spp. Diagnosis of mycosis is currently based on direct mycological examination of biological samples, as well as macroscopic and microscopic identification of the infectious fungus in culture assay. However, culture assays were found to remain sterile in roughly 40% of cases otherwise positive by direct mycological examinations. Additionally, results from culture assays are often difficult to interpret as various NDF are sometimes isolated. This thesis work is composed of three projects focusing on the development of new assays for direct in situ identification of fungi from dermatological samples. Part 1. A Polymerase Chain Reaction - Terminal Restriction Fragment Length Polymorphism assay (PCR-TRFLP) targeting the 28S rDNA was developed to identify dermatophytes and NDF in nails with suspected onychomycosis. This method is faster and more efficient than culture. It further enables the distinction of more than one agent in case of mixed infection. A fast and reliable assay for the identification of dermatophytes and NDF in onychomycosis was found to be highly relevant since onychomycosis with Fusarium spp. or other NDF are weakly responsive or unresponsive to standard onychomycosis treatments with oral terbinafine and itraconazole. Part 2. A nested PCR-sequencing assay targeting the 28S rDNA was developed to identify dermatophyte species in skin and hair samples. This method is especially suitable for tinea capitis where dermatophytes identification is critical for subsequently prescribing the adequate treatment. The challenge presented when performing direct PCR fungi identification in skin and hair differs from that seen in onychomycosis as small amount of material is generally collected, few fungal elements are present in the clinical sample and one dermatophyte among a dozen species must be identified. Part 3. Fusarium spp. is currently isolated from nails with a frequency of 15% of that of dermatophytes in the laboratory of Mycology of the CHUV (2005-2012). The aim of this work was to examine if the intensive use of terbinafine and itraconazole could be a cause of the high incidence of Fusarium nail infections. For that purpose, two different methods, specific PCR and TRFLP, were used to detect both Fusarium spp. and Trichophyton spp. in nails of previously treated or untreated patients. TRFLP assay was found to be less sensitive than classical PCR assays specifically detecting Fusarium spp. or Trichophyton spp. Independently of the detection method used, the prevalence of Fusarium spp. appears not to be higher in patients previously treated by oral standard treatment with terbinafine and azoles which are highly effective to fight Trichophyton spp. in nails. In many cases Fusarium sp. was detected in samples of patients not previously subjected to antifungal therapy. Therefore, these treatments do not appear to favor the establishment of Fusarium spp. after elimination of a dermatophyte in nail infection. - En mycologie médicale, les champignons sont classés en 3 groupes. Les dermatophytes sont des champignons filamenteux capables de se développer dans les tissus kératinisés des hommes et des animaux, ils représentent la principale cause des mycoses superficielles et cutanées de la peau et de ses appendices (ongles et cheveux). Les levures, ou champignons dimorphiques, peuvent être responsables de divers types d'infections (superficielles à profondes). Les moisissures incluent tous les champignons filamenteux non-dermatophytes (NDF), les Aspergillus spp., les Fusarium spp. et les Mucor spp. sont les principales espèces rencontrées. Le diagnostic d'une mycose est basé sur un examen mycologique direct des prélèvements biologiques ainsi que sur l'identification macroscopique et microscopique du champignon infectieux isolé en culture. Cependant, dans environ 40% des cas, l'identification de l'agent pathogène est impossible par cette méthode car la culture reste stérile, bien que l'examen direct soit positif. De plus, la croissance de moisissures et/ou autres contaminants peut rendre l'interprétation de l'examen difficile. Ce travail de thèse est composé de trois projets focalisés sur le développement de nouvelles méthodes d'identification des champignons directement à partir d'échantillons dermatologiques. Projet 1. Une méthode de Réaction en chaîne de polymérase couplée à du polymorphisme de longueur des fragments de restriction terminaux (PCR-TRFLP), en ciblant l'ADN ribosomal 28S, a été développée pour l'identification des dermatophytes et moisissures dans les ongles avec suspicion d'onychomycoses. Cette technique s'est avérée plus rapide et plus efficace que la culture, permettant l'identification de plusieurs champignons en même temps. Posséder une méthode d'identification rapide et fiable des dermatophytes et des NDF dans les onychomycoses a été jugée nécessaire du fait que les Fusarium et d'autres NDF sont peu ou pas sensibles aux traitements oraux standards à la terbinafine et à Γ itraconazole. Projet 2. Une PCR nichée couplée au séquençage d'un fragment de l'ADN ribosomal 28S a été développée afin de différencier les dermatophytes dans la peau et les cheveux. Cette méthode est particulièrement adaptée au cas de tinea capitis, où l'identification du dermatophyte est essentielle afin de prescrire le traitement adéquat. Le problème de l'identification du pathogène fongique dans les cheveux et la peau diffère des onychomycoses car de petites quantités sont prélevées chez les patients, peu d'éléments fongiques sont présents et il faut discriminer un dermatophyte parmi une douzaine d'espèces potentielles. Projet 3. Au laboratoire de Mycologie du CHUV, les Fusarium ont été isolé dans les ongles à une fréquence de 15% pour la période 2005-2012. Le but de ce travail était d'examiner si l'utilisation intensive de terbinafine et d'itraconazole pouvait être une des causes de la forte incidence des infections des ongles par Fusarium. A cet effet, deux méthodes ont été utilisées pour détecter à la fois Fusarium spp. et Trichophyton spp., la PCR spécifique et le TRFLP. Indépendamment de la méthode choisie, il en résulte que la prévalence des Fusarium η'apparaît pas liée à un traitement au préalable des patients avec de la terbinafine ou des azoles, thérapies très efficaces contre les Trichophyton spp. dans les ongles. De plus, il existe de nombreux cas où Fusarium était détecté chez des patients non traités.
Resumo:
O objetivo deste trabalho foi avaliar a presença do DNA pró-viral do lentivírus caprino (LVC) em ejaculados de machos infectados naturalmente, e verificar a influência da lavagem do sêmen e da presença de inflamação testicular sobre a carga viral. Foram realizadas oito coletas de sêmen de sete reprodutores soropositivos para o LVC: quatro antes dos animais sofrerem dano testicular e quatro depois. Entre as coletas realizadas na mesma semana, em uma, o ejaculado era lavado, para retirada do plasma seminal, e na outra, não. O DNA pró-viral do LVC foi identificado pela reação em cadeia da polimerase Nested (PCR Nested), e pelo isolamento viral. O vírus foi isolado em 7,1% das amostras. A PCR identificou o DNA pró-viral em 35,7% do total das amostras: 17,9% nas amostras lavadas e 53,6% das amostras de sêmen integrais. O dano ao testículo permite maior fluxo do vírus para o sêmen, pois antes do dano, 21,4% das amostras foram positivas e pós-dano, 50%. A transmissão do LVC pelo sêmen de reprodutores caprinos é potencializada pela presença de inflamações testiculares e pelo fato de o sêmen criopreservado conter o LVC na forma infectante.
Resumo:
The objective of this work was to select surviving breeders of Litopenaeus vannamei from white spot syndrome virus (WSSV) outbreak, adapted to local climatic conditions and negatively diagnosed for WSSV and infectious hypodermal and hematopoietic necrosis virus (IHHNV), and to evaluate if this strategy is a viable alternative for production in Santa Catarina, Brazil. A total of 800 males and 800 females were phenotypically selected in a farm pond. Nested-PCR analyses of 487 sexually mature females and 231 sexually mature males showed that 63% of the females and 55% of the males were infected with IHHNV. Animals free of IHHNV were tested for WSSV, and those considered double negative were used for breeding. The post-larvae produced were stocked in nine nursery tanks for analysis. From the 45 samples, with 50 post-larvae each, only two were positive for IHHNV and none for WSSV. Batches of larvae diagnosed free of virus by nested-PCR were sent to six farms. A comparative analysis was carried out in growth ponds, between local post-larvae and post-larvae from Northeast Brazil. Crabs (Chasmagnathus granulata), blue crabs (Callinectes sapidus), and sea hares (Aplysia brasiliana), which are possible vectors of these viruses, were also evaluated. The mean survival was 55% for local post-larvae against 23.4% for post-larvae from the Northeast. Sea hares showed prevalence of 50% and crabs of 67% of WSSV.
Resumo:
Recently, three new polyomaviruses (KI, WU and Merkel cell polyomavirus) have been reported to infect humans. It has also been suggested that lymphotropic polyomavirus, a virus of simian origin, infects humans. KI and WU polyomaviruses have been detected mainly in specimens from the respiratory tract while Merkel cell polyomavirus has been described in a very high percentage of Merkel cell carcinomas. The distribution, excretion level and transmission routes of these viruses remain unknown. Here we analyzed the presence and characteristics of newly described human polyomaviruses in urban sewage and river water in order to assess the excretion level and the potential role of water as a route of transmission of these viruses. Nested-PCR assays were designed for the sensitive detection of the viruses studied and the amplicons obtained were confirmed by sequencing analysis. The viruses were concentrated following a methodology previously developed for the detection of JC and BK human polyomaviruses in environmental samples. JC polyomavirus and human adenoviruses were used as markers of human contamination in the samples. Merkel cell polyomavirus was detected in 7/8 urban sewage samples collected and in 2/7 river water samples. Also one urine sample from a pregnant woman, out of 4 samples analyzed, was positive for this virus. KI and WU polyomaviruses were identified in 1/8 and 2/8 sewage samples respectively. The viral strains detected were highly homologous with other strains reported from several other geographical areas. Lymphotropic polyomavirus was not detected in any of the 13 sewage neither in 9 biosolid/sludge samples analyzed. This is the first description of a virus isolated from sewage and river water with a strong association with cancer. Our data indicate that the Merkel cell polyomavirus is prevalent in the population and that it may be disseminated through the fecal/urine contamination of water. The procedure developed may constitute a useful tool for studying the excreted strains, prevalence and transmission of these recently described polyomaviruses.
Resumo:
Plantas de hibisco com superbrotamento e definhamento seguido de morte têm sido observadas nos municípios de São Paulo, Campinas e Piracicaba. Como os sintomas são sugestivos daqueles induzidos por fitoplasmas, o presente trabalho buscou identificar o possível fitoplasma associado com a doença. Assim, 14 plantas sintomáticas de hibisco foram coletadas em Piracicaba (SP) e submetidas ao PCR duplo com os primers P1/Tint-R16F2n/R2 e ao exame em microscópio eletrônico de transmissão. A identificação foi realizada por análise de RFLP com as enzimas de restrição BfaI, DraI, HaeIII, HhaI, HpaII, MboI, MseI, RsaI e TaqI. Testes de transmissão foram conduzidos com enxertia de ramos e uso de Cuscuta subinclusa. Os resultados de nested-PCR revelaram a presença consistente de fitoplasmas em todas as plantas sintomáticas e foram confirmados pela observação de corpúsculos pleomórficos no floema, através da microscopia eletrônica. A análise de RFLP mostrou que o fitoplasma encontrado em hibisco pertence ao grupo 16SrXV, o mesmo grupo do Candidatus Phytoplasma brasiliense. O fitoplasma foi transmitido de planta doente para sadia, tanto pela enxertia como pela C. subinclusa, demonstrando ser o agente do superbrotamento do hibisco.