933 resultados para Mutant Cycles
Resumo:
Hill, Joe M., Lloyd, Noel G., Pearson, Jane M., 'Centres and limit cycles for an extended Kukles system', Electronic Journal of Differential Equations, Vol. 2007(2007), No. 119, pp. 1-23.
Resumo:
Hill, Joe M., Lloyd, Noel G., Pearson, Jane M., 'Limit cycles of a predator-prey model with intratrophic predation', Journal of Mathematical Analysis and Applications Volume 349, Issue 2, 15 January 2009, Pages 544-555
Resumo:
Maria Roca, Caron James, Adriana Pruzinsk?, Stefan H?rtensteiner, Howard Thomas and Helen Ougham. Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. Phytochemistry, 65 (9), 1231-1238. Sponsorship: BBSRC RAE2008
Resumo:
HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.
Resumo:
M66 an X-ray induced mutant of winter wheat (Triticum aestivum) cv. Guardian exhibits broad-spectrum resistance to powdery mildew (Blumeria graminis f. sp. tritici), yellow rust (Puccinia striiformis f. sp. tritici), and leaf rust (Puccinia recondita f. sp. tritici), along with partial resistance to stagnonospora nodorum blotch (caused by the necrotroph Stagonosporum nodorum) and septoria tritici blotch (caused by the hemibiotroph Mycosphaerella graminicola) compared to the parent plant ‘Guardian’. Analysis revealed that M66 exhibited no symptoms of infection following artificial inoculation with Bgt in the glasshouse after adult growth stage (GS 45). Resistance in M66 was associated with widespread leaf flecking which developed during tillering. Flecking also occurred in M66 leaves without Bgt challenge; as a result grain yields were reduced by approximately 17% compared to ‘Guardian’ in the absence of disease. At the seedling stage, M66 exhibited partial resistance. M66, along with Tht mutants (Tht 12, Tht13), also exhibit increased tolerance to environmental stresses (abiotic), such as drought and heat stress at seedling and adult growth stages, However, adult M66 exhibited increased susceptibility to the aphid Schizaphis graminum compared to ‘Guardian’. Resistance to Bgt in M66 was characterized with increased and earlier H2O2 accumulation at the site of infection which resulted in increased papilla formation in epidermal cells, compared to ‘Guardian’. Papilla formation was associated with reduced pathogen ingress and haustorium formation, indicating that the primary cause of resistance in M66 was prevention of pathogen penetration. Heat treatment at 46º C prior to challenge with Bgt also induced partial disease resistance to Blumeria graminis f. sp. tritici in ‘Guardian’ and M66 seedlings. This was characterized by a delay in primary infection, due to increased production of ROS species, such as hydrogen peroxide, ROS-scavenging enzymes and Hsp70, resulting in cross-linking of cell wall components prior to inoculation. This actively prevented the fungus from penetrating the epidermal cell wall. Proteomics analysis using 2-D gel electrophoresis identified primary and secondary disease resistance effects in M66 including detection of ROS scavenging enzymes (4, 24 hai), such as ascorbate peroxidase and a superoxidase dismutase isoform (CuZnSOD) in M66 which were absent from ‘Guardian’. Chitinase (PR protein) was also upregulated (24 hai) in M66 compared to ‘Guardian’.Monosomic and ditelosomic analysis of M66 revealed that the mutation in M66 is located on the long arm of chromosome 2B (2BL). Chromosome 2BL is known to have key genes involved in resistance to pathogens such as those causing stripe rust and powdery mildew. The TaMloB1 gene, an orthologue of the barley Mlo gene, is also located on chromosome 2BL. Sanger sequencing of part of the coding sequence revealed no deletions in the TaMloB1 gene between ‘Guardian’ and M66.
Resumo:
info:eu-repo/semantics/nonPublished
North atlantic deepwater temperature change during late pliocene and late quaternary climatic cycles
Resumo:
Variations in the ratio of magnesium to calcium (Mg/Ca) in fossil ostracodes from Deep Sea Drilling Project Site 607 in the deep North Atlantic show that the change in bottom water temperature during late Pliocene 41,000-year obliquity cycles averaged 1.5°C between 3.2 and 2.8 million years ago (Ma) and increased to 2.3°C between 2.8 and 2.3 Ma, coincidentally with the intensification of Northern Hemisphere glaciation. During the last two 100,000-year glacial-to-interglacial climatic cycles of the Quaternary, bottom water temperatures changed by 4.5°C. These results show that glacial deepwater cooling has intensified since 3.2 Ma, most likely as the result of progressively diminished deep-water production in the North Atlantic and of the greater influence of Antarctic bottom water in the North Atlantic during glacial periods. The ostracode Mg/Ca data also allow the direct determination of the temperature component of the benthic foraminiferal oxygen isotope record from Site 607, as well as derivation of a hypothetical sea-level curve for the late Pliocene and late Quaternary. The effects of dissolution on the Mg/Ca ratios of ostracode shells appear to have been minimal.
Resumo:
The beta 2-adrenergic receptor (beta 2AR) can be constitutively activated by mutations in the third intracellular loop. Whereas the wild-type receptor exists predominantly in an inactive conformation (R) in the absence of agonist, the mutant receptor appears to spontaneously adopt an active conformation (R*). We now demonstrate that not only is the mutant beta 2AR constitutively active, it is also constitutively desensitized and down-regulated. To assess whether the mutant receptor can constitutively engage a known element of the cellular desensitization machinery, the receptor was purified and reconstituted into phospholipid vesicles. These preparations retained the essential properties of the constitutively active mutant receptor: agonist-independent activity [to stimulate guanine nucleotide-binding protein (Gs)-GTPase] and agonist-specific increase in binding affinity. Moreover, the purified mutant receptor, in the absence of agonist, was phosphorylated by recombinant beta AR-specific kinase (beta ARK) in a fashion comparable to the agonist-occupied wild-type receptor. Thus, the conformation of the mutated receptor is equivalent to the active conformation (R*), which stimulates Gs protein and is identical to the beta ARK substrate.
Resumo:
INTRODUCTION: Malignant gliomas frequently harbor mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Studies suggest that IDH mutation contributes to tumor pathogenesis through mechanisms that are mediated by the neomorphic metabolite of the mutant IDH1 enzyme, 2-hydroxyglutarate (2-HG). The aim of this work was to synthesize and evaluate radiolabeled compounds that bind to the mutant IDH1 enzyme with the goal of enabling noninvasive imaging of mutant IDH1 expression in gliomas by positron emission tomography (PET). METHODS: A small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported butyl-phenyl sulfonamide inhibitors of mutant IDH1. Enzyme inhibition assays were conducted using purified mutant IDH1 enzyme, IDH1-R132H, to determine the IC50 and the maximal inhibitory efficiency of the synthesized compounds. Selected compounds, 1 and 4, were labeled with radioiodine ((125)I) and/or (18)F using bromo- and phenol precursors, respectively. In vivo behavior of the labeled inhibitors was studied by conducting tissue distribution studies with [(125)I]1 in normal mice. Cell uptake studies were conducted using an isogenic astrocytoma cell line that carried a native IDH1-R132H mutation to evaluate the potential uptake of the labeled inhibitors in IDH1-mutated tumor cells. RESULTS: Enzyme inhibition assays showed good inhibitory potency for compounds that have iodine or a fluoroethoxy substituent at the ortho position of the phenyl ring in compounds 1 and 4 with IC50 values of 1.7 μM and 2.3 μM, respectively. Compounds 1 and 4 inhibited mutant IDH1 activity and decreased the production of 2-HG in an IDH1-mutated astrocytoma cell line. Radiolabeling of 1 and 4 was achieved with an average radiochemical yield of 56.6 ± 20.1% for [(125)I]1 (n = 4) and 67.5 ± 6.6% for [(18)F]4 (n = 3). [(125)I]1 exhibited favorable biodistribution characteristics in normal mice, with rapid clearance from the blood and elimination via the hepatobiliary system by 4 h after injection. The uptake of [(125)I]1 in tumor cells positive for IDH1-R132H was significantly higher compared to isogenic WT-IDH1 controls, with a maximal uptake ratio of 1.67 at 3 h post injection. Co-incubation of the labeled inhibitors with the corresponding nonradioactive analogs, and decreasing the normal concentrations of FBS (10%) in the incubation media substantially increased the uptake of the labeled inhibitors in both the IDH1-mutant and WT-IDH1 tumor cell lines, suggesting significant non-specific binding of the synthesized labeled butyl-phenyl sulfonamide inhibitors. CONCLUSIONS: These data demonstrate the feasibility of developing radiolabeled probes for the mutant IDH1 enzyme based on enzyme inhibitors. Further optimization of the labeled inhibitors by modifying the chemical structure to decrease the lipophilicity and to increase potency may yield compounds with improved characteristics as probes for imaging mutant IDH1 expression in tumors.
Resumo:
It is shown that every connected, locally connected graph with the maximum vertex degree Δ(G)=5 and the minimum vertex degree δ(G)3 is fully cycle extendable. For Δ(G)4, all connected, locally connected graphs, including infinite ones, are explicitly described. The Hamilton Cycle problem for locally connected graphs with Δ(G)7 is shown to be NP-complete