687 resultados para Muon spectrometers
Resumo:
In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.
Resumo:
The 1-6 MeV electron flux at 1 AU has been measured for the time period October 1972 to December 1977 by the Caltech Electron/Isotope Spectrometers on the IMP-7 and IMP-8 satellites. The non-solar interplanetary electron flux reported here covered parts of five synodic periods. The 88 Jovian increases identified in these five synodic periods were classified by their time profiles. The fall time profiles were consistent with an exponential fall with τ ≈ 4-9 days. The rise time profiles displayed a systematic variation over the synodic period. Exponential rise time profiles with τ ≈ 1-3 days tended to occur in the time period before nominal connection, diffusive profiles predicted by the convection-diffusion model around nominal connection, and abrupt profiles after nominal connection.
The times of enhancements in the magnetic field, │B│, at 1 AU showed a better correlation than corotating interaction regions (CIR's) with Jovian increases and other changes in the electron flux at 1 AU, suggesting that │B│ enhancements indicate the times that barriers to electron propagation pass Earth. Time sequences of the increases and decreases in the electron flux at 1 AU were qualitatively modeled by using the times that CIR's passed Jupiter and the times that │B│ enhancements passed Earth.
The electron data observed at 1 AU were modeled by using a convection-diffusion model of Jovian electron propagation. The synodic envelope formed by the maxima of the Jovian increases was modeled by the envelope formed by the predicted intensities at a time less than that needed to reach equilibrium. Even though the envelope shape calculated in this way was similar to the observed envelope, the required diffusion coefficients were not consistent with a diffusive process.
Three Jovian electron increases at 1 AU for the 1974 synodic period were fit with rise time profiles calculated from the convection-diffusion model. For the fits without an ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 1.0 - 2.5 x 1021 cm2/sec and ky = 1.6 - 2.0 x 1022 cm2/sec. For the fits that included the ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 0.4 - 1.0 x 1021 cm2/sec and ky = 0.8 - 1.3 x 1022 cm2/sec.
Resumo:
A study of the muon decay channel of the τ lepton with the presence of a photon has been carried out to verify theoretical predictions for the production rate of e+e- → τ+τ-γ and for the branching ratio of τ- → ντ µ-νµγ. Included in this study is the first direct measurement of radiative tau decay. Using e+e- annihilation data taken at 29 GeV center-of-mass energy with the Mark II detector, we find the ratio of the measured τ- → ντ µ-νµγ branching fraction to the expected value from QED to be 1.03 ± 0.42. The ratio of measured-to-predicted number of events from radiative T production, e+e- → τ+τ-γ, where one of the τ's decay to μνν is found to be 0.91 ± 0.20. We have not seen an indication of anomalous behavior in radiative tau events.
Resumo:
This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation.
The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate.
Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f99) was found to coincide with periods of heavy (f42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( < 1 hr) compared to the time needed for particles to become hygroscopic at sub-saturated humidity ( > 4 hr).
Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate.
Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.
Resumo:
Apresentamos um estudo preliminar da produção difrativa de mésons utilizando dados obtidos da colisão próton-próton, a energias de centro de massa de 7 TeV, com o experimento CMS-LHC. O trabalho inclui o desenvolvimento do algoritmo de reconstrução dos mésons D* através do canal de decaimento D*->D0 + pion (lento) ->K+pion, a medida da eficiência de detecção e reconstrução, e uma análise do comportamento de variáveis cinemáticas na produção difrativa dessas partículas, particularmente, das lacunas de rapidez. Para isso, foi utilizada uma luminosidade integrada de 3,171pb^(-1) de dados coletados no ano de 2010. As análises com os dados experimentais foram comparadas com os resultados obtidos com geradores de Monte Carlo PYTHIA6, PYTHIA8 e POMPYT.
Resumo:
Qens/wins 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers / editado por:Frick, B; Koza, MM; Boehm, M; Mutka, H
Resumo:
对表面热透镜技术测量光学薄膜弱吸收低频调制时不同基底对测量的影响进行了理论分析。用Lambda-900分光光度计测量了K9和石英基底的Ti3O5单层膜的吸收值,将该组样品作为定标片;用表面热透镜装置分别测量了BK7和石英空白基底及HfO2,ZnO两组不同基底不同厚度单层膜样品的吸收。通过分析比较同一工艺条件下镀制的不同基底薄膜样品用与其同种和不同种基底定标片定标测量的结果,表明在低频测量时需要用与测量样品同种基底的定标片定标;不同厚度样品的测量结果表明,在不能严格满足热薄条件时,测量结果需引入修正值。
Resumo:
O Compact Muon Solenoid (CMS) é um dos principais detectores instalados no LHC que possibilita o estudo de diferentes aspectos da Física, indo do Modelo Padrão à matéria escura. Esse detector de propósito geral, foi construído para ser capaz de medir múons com uma grande precisão e todos os seus subdetectores foram construídos com uma alta granularidade, tornando possível identificar e caracterizar as propriedades cinemáticas das partículas finais da colisão. O algoritmo de reconstrução de eventos inclui a identificação de jatos, ou seja, é possível identificar a assinatura da produção de pártons na colisão e a medida de seções de choque da produção de muitos jatos é um dos métodos para se explorar as contribuições da Cromodinâmica Quântica (Quantum Chromodynamics - QCD) perturbativa, permitindo avaliar as previsões implementadas nas simulações de eventos. Tendo em vista a caracterização de processos relacionados com a QCD em colisões de próton-próton a uma energia do centro de massa de 7 TeV, é apresentada a medida da seção de choque da produção inclusiva de multijatos no CMS. Para realizar essa medida foram utilizados dados reais coletados em 2010, onde não se apresentava muitas colisões por cruzamento de pacote, com uma luminosidade integrada de L = 2,869 pb-1 e utilizando jatos que estão em quase todo o espaço de fase acessível em pseudorapidez |n|≤ 4,8 e momentum transverso pT ≥ 30 GeV/ c2. Desse resultado foram removidos os efeitos de detecção comparado com predições simuladas.
Resumo:
Este trabalho apresenta um estudo sobre a produção de dijatos exclusivos em interações pp, do tipo pp → p "+" dijatos "+" p, onde os prótons desta interação permanecem intactos, e o símbolo "+" indica uma lacuna na pseudorapidez, uma região com ausência de atividade hadrônica entre os prótons espalhados e o sistema central de dijatos; este processo é conhecido como produção central exclusiva. A análise utiliza uma amostra de dados que corresponde a uma luminosidade efetiva de 24;48 pb-1 coletados pelo experimento Compact Muon Solenoid (CMS) no Large Hadron Collider (LHC), no ano de 2010, com energia de centro de massa √s = 7 TeV. Este canal possui uma assinatura experimental única, caracterizada pelos prótons espalhados na região frontal, ou a baixos ângulos e duas grandes lacunas opostas. O processo da produção central exclusiva é útil para o entendimento das interações no contexto da QCD.
Resumo:
Achieving higher particles energies and beam powers have long been the main focus of research in accelerator technology. Since Accelerator Driven Subcritical Reactors (ADSRs) have become the subject of increasing interest, accelerator reliability and modes of operation have become important matters that require further research and development in order to accommodate the engineering and economic needs of ADSRs. This paper focuses on neutronic and thermo-mechanical analyses of accelerator-induced transients in an ADSR. Such transients fall into three main categories: beam interruptions (trips), pulsed-beam operation, and beam overpower. The concept of a multiple-target ADSR is shown to increase system reliability and to mitigate the negative effects of beam interruptions, such as thermal cyclic fatigue in the fuel cladding and the huge financial cost of total power loss. This work also demonstrates the effectiveness of the temperature-to-reactivity feedback mechanisms in ADSRs. A comparison of shutdown mechanisms using control rods and beam cut-off highlights the intrinsic safety features of ADSRs. It is evident that the presence of control rods is crucial in an industrial-scale ADSR. This paper also proposes a method to monitor core reactivity online using the repetitive pattern of beam current fluctuations in a pulsed-beam operation mode. Results were produced using PTS-ADS, a computer code developed specifically to study the dynamic neutronic and thermal responses to beam transients in subcritical reactor systems. © 2012 Elsevier B.V.
Resumo:
The absolute responses of the NPL liquid scintillation spectrometers to monoenergetic neutrons and gammas were measured at various energies in the ranges 1.2 - 17 MeV approximately for neutrons and 0.28 - 1.8 MeV for gammas. Additional measurements of the proton light output function were also carried out. Calculated responses were then obtained for the larger detector using the programs NRESP7 and PHRESP, and compared with the absolute measurements. Finally, response matrices for this detector were generated using responses calculated at closely spaced energies.
Resumo:
There is a growing interest in using 242mAm as a nuclear fuel. The advantages of 242mAm as a nuclear fuel derive from the fact that 242mAm has the highest thermal fission cross section. The thermal capture cross section is relatively low and the number of neutrons per thermal fission is high. These nuclear properties make it possible to obtain nuclear criticality with ultra-thin fuel elements. The possibility of having ultra-thin fuel elements enables the use of these fission products directly, without the necessity of converting their energy to heat, as is done in conventional reactors. There are three options of using such highly energetic and highly ionized fission products. 1. Using the fission products themselves for ionic propulsion. 2. Using the fission products in an MHD generator, in order to obtain electricity directly. 3. Using the fission products to heat a gas up to a high temperature for propulsion purposes. In this work, we are not dealing with a specific reactor design, but only calculating the minimal fuel elements' thickness and the energy of the fission products emerging from these fuel elements. It was found that it is possible to design a nuclear reactor with a fuel element of less than 1 μm of 242mAm. In such a fuel element, 90% of the fission products' energy can escape.