707 resultados para Multiplicity
Resumo:
Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs , , , , ). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.
Resumo:
The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration
Resumo:
Background: Information about the composition of regulatory regions is of great value for designing experiments to functionally characterize gene expression. The multiplicity of available applications to predict transcription factor binding sites in a particular locus contrasts with the substantial computational expertise that is demanded to manipulate them, which may constitute a potential barrier for the experimental community. Results: CBS (Conserved regulatory Binding Sites, http://compfly.bio.ub.es/CBS) is a public platform of evolutionarily conserved binding sites and enhancers predicted in multiple Drosophila genomes that is furnished with published chromatin signatures associated to transcriptionally active regions and other experimental sources of information. The rapid access to this novel body of knowledge through a user-friendly web interface enables non-expert users to identify the binding sequences available for any particular gene, transcription factor, or genome region. Conclusions: The CBS platform is a powerful resource that provides tools for data mining individual sequences and groups of co-expressed genes with epigenomics information to conduct regulatory screenings in Drosophila.
Resumo:
La educación social en sus diversas acepciones (profesión, práctica educativa y estudios universitarios) ha experimentado unos importantes cambios en los últimos años. De una actividad centrada en la solución de problemas concretos dentro de un ámbito específico, se ha ido avanzando hacia la necesidad de estar capacitado para el trabajo en entornos complejos y difusos. El ejercicio de la actividad en estos entornos requiere de un posicionamiento estratégico, de una visión global más allá de un manejo de recetas cerradas y de una perspectiva ética que trascienda el simple cumplimiento de instrucciones. Por ello, capacitar al profesional para el diseño y la aplicación de las acciones socioeducativas es una temática que requiere la integración de multiplicidad de competencias para que cada intervención sea una respuesta que se adapte a la situación, a las capacidades y al contexto de la persona atendida. En el periodo de formación universitaria, el practicum es un espacio de aprendizaje privilegiado donde se ponen en juego todos los conocimientos adquiridos y sirve de trampolín para empezar a ejercer la profesión en un contexto real pero seguro, que más adelante será el escenario cotidiano de la acción profesional
Resumo:
Les syndromes de déficiences cérébrales en créatine (CCDS) sont dus à des mutations dans les gènes GATM et G AMT (codant pour les enzymes AGAT et G AMT de la voie de synthèse de créatine) ainsi que SLC6A8 (transporteur de créatine), et génèrent une absence ou une très forte baisse de créatine (Cr) dans le cerveau, mesurée par spectroscopic de résonance magnétique. Les patients CCDS développent des handicaps neurologiques sévères. Les patients AGAT et GAMT peuvent être traités avec des doses importantes de Cr, mais gardent dans la plupart des cas des séquelles neurologiques irréversibles. Aucun traitement efficace n'existe à ce jour pour la déficience en SLC6A8. Bien que de nombreux modèles aient été développés pour comprendre la Cr cérébrale en conditions physiologiques, les pathomécanismes des CCDS ne sont pas encore compris. Des souris transgéniques pour les gènes Gatm, Gamt et Slc6a8 ont été générées, mais elles ne miment que partiellement la pathologie humaine. Parmi les CCDS, la déficience en GAMT est la plus sévère, en raison de l'accumulation cérébrale de l'intermédiaire guanidinoacétate (GAA). Alors que la toxicité cérébrale du GAA a été étudiée par exposition directe au GAA d'animaux adultes sains, les mécanismes de la toxicité du GAA en condition de déficience en GAMT dans le cerveau en développement sont encore inconnus. Le but de ce projet était donc de développer un modèle de déficience en GAMT dans des cultures 3D primaires de cellules nerveuses de rat en agrégats par knock-down du gène GAMT, en utilisant un virus adéno-associé (AAV) induisant le mécanisme d'interférence à l'ARN (RNAi). Le virus scAAV2, à la multiplicité d'infection de 1000, s'est révélé le plus efficace pour transduire tous les types de cellules nerveuses des cultures (neurones, astrocytes, oligodendrocytes), et générer un knock-down maximal de la protéine GAMT de 85% (jour in vitro 18). Cette déficience partielle en GAMT s'est révélée insuffisante pour générer une déficience en Cr, mais a causé l'accumulation attendue de GAA, à des doses comparables aux niveaux observés dans le LCR des patients GAMT. Le GAA a induit une croissance axonale anarchique accompagnée d'une baisse de l'apoptose naturelle, suivis par une induction tardive de mort cellulaire non-apoptotique. Le co-traitement par la Cr a prévenu tous les effets toxiques du GAA. Ce travail montre que l'accumulation de GAA en absence de déficience en Cr est suffisante pour affecter le développement du tissu nerveux, et suggère que des formes de déficiences en GAMT supplémentaires, ne présentant pas de déficiences en Cr, pourraient être découvertes par mesure du GAA, en particulier à travers les programmes récemment proposés de dépistage néonatal de la déficience en GAMT. -- Cerebral creatine deficiency syndromes (CCDS) are caused by mutations in the genes GATM and GAMT (respectively coding for the two enzymes of the creatine synthetic pathway, AGAT and GAMT) as well as SLC6A8 (creatine transporter), and lead to the absence or very strong decrease of creatine (Cr) in the brain when measured by magnetic resonance spectroscopy. Affected patients show severe neurological impairments. While AGAT and GAMT deficient patients can be treated with high dosages of Cr, most remain with irreversible brain sequelae. No treatment has been successful so far for SLC6A8 deficiency. While many models have helped understanding the cerebral Cr pathways in physiological conditions, the pathomechanisms underlying CCDS are yet to be elucidated. Transgenic mice carrying mutations in the Gatm, Gamt and Slc6a8 genes have been developed, but only partially mimic the human pathology. Among CCDS, GAMT deficiency is the most severe, due to the CNS accumulation of the guanidinoacetate (GAA) intermediate. While brain toxicity of GAA has been explored through direct GAA exposure of adult healthy animals, the mechanisms underlying GAA toxicity in GAMT deficiency conditions on the developing CNS are yet unknown. The aim of this project was thus to develop and characterize a GAMT deficiency model in developing brain cells by gene knockdown, by adeno-associated virus (AAV)-driven RNA interference (RNAi) in rat 3D organotypic primary brain cell cultures in aggregates. scAAV2 with a multiplicity of infection of 1000 was shown as the most efficient serotype, was able to transduce all brain cell types (neurons, astrocytes, oligodendrocytes) and to induce a maximal GAMT protein knockdown of 85% (day in vitro 18). Metabolite analysis showed that partial GAMT knockdown was insufficient to induce Cr deficiency but generated the awaited GAA accumulation at concentrations comparable to the levels observed in cerebrospinal fluid of GAMT-deficient patients. Accumulated GAA induced axonal hypersprouting paralleled with inhibition of natural apoptosis, followed by a later induction in non-apoptotic cell death. Cr supplementation led to the prevention of all GAA-induced toxic effects. This work shows that GAA accumulation without Cr deficiency is sufficient to affect CNS development, and suggests that additional partial GAMT deficiencies, which may not show the classical brain Cr deficiency, may be discovered through GAA measurement including by recently proposed neonatal screening programs for GAMT deficiency.
Resumo:
Port cities have represented one of the first forms of urbanization in which maritime culture has had an important role in the construction of the city. This culture has often been the foundation of an evolving tendency confronted with other lines of development, against which it has alternately integrated itself creatively, or has had to compete. The study of the multiplicity of these evolving processes, with their corresponding conflicts, can be useful to develop a critical vision of the grand transformations of industrial ports in urban areas and to initiate a critical reflection which would help to interpret current tendencies. The Barcelona case seems to be exemplary because the new projects for the transformation of the old port, focused on providing a service for luxury boats, have reopened a discussion on urban transformation works carried out in the past and have mostly revealed that the relationship between the port and the city is in constant evolution.For this reason there is a discussion about the extent to which large scale port transformations can have repercussions on maritime culture in a locality and what the role of maritime culture is with respect to fundamental economic strategies linked mostly to the construction of the post-Fordist city
Resumo:
Hund's maximum multiplicity rule as stated in most elementary and intermediate level textbooks on general and inorganic chemistry and usually taught at the college and undergraduate level is incorrect. It is true that electrons entering a subshell of an atom tend to occupy the orbitals singly as far as possible but not necessarily with parallel spins. Also, proper definitions and correct use of terms like configuration, microstate, spectroscopic term, level and state are essential if confusion on the part of the student, especially the beginner, is to be avoided.
Resumo:
Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.
Resumo:
The results obtained in several yield tests, at an international level (mainly the famous PISA 2003 report, by the OCDE), have raised a multiplicity of performances in order to improve the students' yield regarding problem solving. In this article we set a clear guideline on how problems should be used in Mathematics lessons, not for obtaining better scores in the yield tests but for improving the development of Mathematical thinking in students. From this perspective, the author analyses, through eight reflections, how the concept of problem, transmitted both in the school and from society, influences the students
Resumo:
As a discipline, logic is arguably constituted of two main sub-projects: formal theories of argument validity on the basis of a small number of patterns, and theories of how to reduce the multiplicity of arguments in non-logical, informal contexts to the small number of patterns whose validity is systematically studied (i.e. theories of formalization). Regrettably, we now tend to view logic 'proper' exclusively as what falls under the first sub-project, to the neglect of the second, equally important sub-project. In this paper, I discuss two historical theories of argument formalization: Aristotle's syllogistic theory as presented in the "Prior Analytics", and medieval theories of supposition. They both illustrate this two-fold nature of logic, containing in particular illuminating reflections on how to formalize arguments (i.e. the second sub-project). In both cases, the formal methods employed differ from the usual modern technique of translating an argument in ordinary language into a specially designed symbolism, a formal language. The upshot is thus a plea for a broader conceptualization of what it means to formalize.
Resumo:
Previous studies on pencil grip have typically dealt with the developmental aspects in young children while handwriting research is mainly concerned with speed and legibility. Studies linking these areas are few. Evaluation of the existing pencil grip studies is hampered by methodological inconsistencies. The operational definitions of pencil grip arerational but tend to be oversimplified while detailed descriptors tend to be impractical due to their multiplicity. The present study introduces a descriptive two-dimensional model for the categorisation of pencil grip suitable for research applications in a classroom setting. The model is used in four empirical studies of children during the first six years of writing instruction. Study 1 describes the pencil grips observed in a large group of pupils in Finland (n = 504). The results indicate that in Finland the majority of grips resemble the traditional dynamic tripod grip. Significant genderrelated differences in pencil grip were observed. Study 2 is a longitudinal exploration of grip stability vs. change (n = 117). Both expected and unexpected changes were observed in about 25 per cent of the children's grips over four years. A new finding emerged using the present model for categorisation: whereas pencil grips would change, either in terms of ease of grip manipulation or grip configuration, no instances were found where a grip would have changed concurrently on both dimensions. Study 3 is a cross-cultural comparison of grips observed in Finland and the USA (n = 793). The distribution of the pencil grips observed in the American pupils was significantly different from those found in Finland. The cross-cultural disparity is most likely related to the differences in the onset of writing instruction. The differences between the boys' and girls' grips in the American group were non-significant.An implication of Studies 2 and 3 is that the initial pencil grip is of foremost importance since pencil grips are largely stable over time. Study 4 connects the pencil grips to assessment of the mechanics of writing (n = 61). It seems that certain previously not recommended pencil grips might nevertheless be includedamong those accepted since they did not appear to hamper either fluency or legibility.
Resumo:
Knowledge transfer is a complex process. Knowledge transfer in the form of exporting education products from one system of education to another is particularly complicated, because each system has been developed in a particular context to meet the requirements seen as relevant at each time. National innovation systems are often seen to form an essential framework within which the development of a country, its economy and level of knowledge are considered and promoted. These systems are orientated towards the future, and as such they also provide a framework for the knowledge transfer related to the development of education. In the best of circumstances they are able to facilitate and boost this transfer both from the viewpoint of the provider and the recipient. The leading thought and the idea of the study is that education export is a form of knowledge transfer, which is illustrated by the existing models included. The purpose of this study is to explore, analyze and describe the factors and phenomena related to education export, and more specifically, those related to the experiences and potential of Finnish education export to Chile. For better understanding, of the multiplicity of the issue involved, the current status of education export between Finland and Chile and he existing efforts within the Finnish innovation network will be outlined as well as new forms of co-operation between Finland and Chile in educational matters explored. Several countries have started to commercialize their education system in order to establish themselves as emerging education exporters. Moreover, the demand for education reform is accurate in many developing countries. This offers a good match between Finland and Chile to be the example countries of the research. The main research findings suggest that there are several business areas in education export. These include degrees in education, training services and education technologies for example The factors that influence education export can be divided into four groups, including academic, cultural, political and economic aspects. Challenges to overcome include the lack of product or services to be sold, lack of market and cultural knowledge of the buyer country, financing and lack of suitable pricing model. National innovation systems could be seen as enabling entities for successful education export. The extensive networks that national innovation systems aim to form, could operate as a basis for joining the forces in selling knowledge as well as receiving knowledge in a constructive way.
Resumo:
The superconducting gap is a basic character of a superconductor. While the cuprates and conventional phonon-mediated superconductors are characterized by distinct d- and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting gap distributions in iron-based superconductors are rather diversified. While nodeless gap distributions have been directly observed in Ba1–xKxFe2As2, BaFe2–xCoxAs2, LiFeAs, KxFe2–ySe2, and FeTe1–xSex, the signatures of a nodal superconducting gap have been reported in LaOFeP, LiFeP, FeSe, KFe2As2, BaFe2–xRuxAs2, and BaFe2(As1–xPx)2. Due to the multiplicity of the Fermi surface in these compounds s± and d pairing states can be both nodeless and nodal. A nontrivial orbital structure of the order parameter, in particular the presence of the gap nodes, leads to effects in which the disorder is much richer in dx2–y2-wave superconductors than in conventional materials. In contrast to the s-wave case, the Anderson theorem does not work, and nonmagnetic impurities exhibit a strong pair-breaking influence. In addition, a finite concentration of disorder produces a nonzero density of quasiparticle states at zero energy, which results in a considerable modification of the thermodynamic and transport properties at low temperatures. The influence of order parameter symmetry on the vortex core structure in iron-based pnictide and chalcogenide superconductors has been investigated in the framework of quasiclassical Eilenberger equations. The main results of the thesis are as follows. The vortex core characteristics, such as, cutoff parameter, ξh, and core size, ξ2, determined as the distance at which density of the vortex supercurrent reaches its maximum, are calculated in wide temperature, impurity scattering rate, and magnetic field ranges. The cutoff parameter, ξh(B; T; Г), determines the form factor of the flux-line lattice, which can be obtained in _SR, NMR, and SANS experiments. A comparison among the applied pairing symmetries is done. In contrast to s-wave systems, in dx2–y2-wave superconductors, ξh/ξc2 always increases with the scattering rate Г. Field dependence of the cutoff parameter affects strongly on the second moment of the magnetic field distributions, resulting in a significant difference with nonlocal London theory. It is found that normalized ξ2/ξc2(B/Bc2) dependence is increasing with pair-breaking impurity scattering (interband scattering for s±-wave and intraband impurity scattering for d-wave superconductors). Here, ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field Bc2 = Φ0/2πξ2 c2, where Φ0 is a flux quantum. Two types of ξ2/ξc2 magnetic field dependences are obtained for s± superconductors. It has a minimum at low temperatures and small impurity scattering transforming in monotonously decreasing function at strong scattering and high temperatures. The second kind of this dependence has been also found for d-wave superconductors at intermediate and high temperatures. In contrast, impurity scattering results in decreasing of ξ2/ξc2(B/Bc2) dependence in s++ superconductors. A reasonable agreement between calculated ξh/ξc2 values and those obtained experimentally in nonstoichiometric BaFe2–xCoxAs2 (μSR) and stoichiometric LiFeAs (SANS) was found. The values of ξh/ξc2 are much less than one in case of the first compound and much more than one for the other compound. This is explained by different influence of two factors: the value of impurity scattering rate and pairing symmetry.
Resumo:
Dental injuries are common and the incidence of maxillofacial injuries has increased over the recent decades in Finland. Accidental injuries are the global leading cause of death among children over the age of one year and among adults under the age of 40 globally. Significant resources and costs are needed for the treatment of these patients. The prevention is the most economical way to reduce trauma rates and costs. For the prevention it is crucial to know the prevalences, incidences and risk factors related to injuries. To improve the quality of treatment, it is essential to explore the causes, trauma mechanisms and management of trauma. The above mentioned was the aim of this thesis. With a large epidemiological cohort study (5737 participants) it was possible to estimate lifetime prevalence of and risk factors for dental trauma in general population (Study I). The prevalence of dental fractures was 43% and the prevalence of dental luxations and avulsions was 14%. Male gender, a history of previous non-dental injuries, mental distress, overweight and high alcohol consumption were positively associated with the occurrence of dental injuries Study II was conducted to explore the differences in type and multiplicity of mandibular fractures in three different countries (Canada, Finland and Kuwait). This retrospective study showed that the differences in mandibular fracture multiplicity and location are based on different etiologies and demographic patterns. This data can be exploited for planning of measures to prevent traumatic facial fractures. The etiology, management and outcome of 63 pediatric skull base fracture (Study III) and 20 pediatric frontobasal fracture patients (Study IV) were explored. These retrospective studies showed that, both skull base fracture and frontobasa fracture are rare injuries in childhood and although intracranial injuries and morbidity are frequent, permanent neurological or neuropsychological deficits are infrequent. A systematic algorithm (Study V) for computer tomography (CT) image review was aimed at clinicians and radiologists to improve the assessment of patients with complex upper midface and cranial base trauma. The cohort study was cross sectional and data was collected in the Turku and Oulu University Hospitals. A novel image-reviewing algorithm was created to enhance the specificity of CT for the diagnosis of frontobasal fractures. The study showed that an image-viewing algorithm standardizes the frontobasal trauma detection procedure and leads to better control and assessment. The purpose of the retrospective subcranial craniotomy study (VI) was to review the types of frontobasal fractures and their management, complications and outcome when the fracture is approached subcranially. The subcranial approach appears to be successful and have a reasonably low complication rate. It may be recommended as the technique of choice in multiple and the most complicated frontal base fractures where the endoscopic endonasal approach is not feasible.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014