959 resultados para Multiple routes planning
Resumo:
The loss of habitat and biodiversity worldwide has led to considerable resources being spent for conservation purposes on actions such as the acquisition and management of land, the rehabilitation of degraded habitats, and the purchase of easements from private landowners. Prioritising these actions is challenging due to the complexity of the problem and because there can be multiple actors undertaking conservation actions, often with divergent or partially overlapping objectives. We use a modelling framework to explore this issue with a study involving two agents sequentially purchasing land for conservation. We apply our model to simulated data using distributions taken from real data to simulate the cost of patches and the rarity and co-occurence of species. In our model each agent attempted to implement a conservation network that met its target for the minimum cost using the conservation planning software Marxan. We examine three scenarios where the conservation targets of the agents differ. The first scenario (called NGO-NGO) models the situation where two NGOs are both are targeting different sets of threatened species. The second and third scenarios (called NGO-Gov and Gov-NGO, respectively) represent a case where a government agency attempts to implement a complementary conservation network representing all species, while an NGO is focused on achieving additional protection for the most endangered species. For each of these scenarios we examined three types of interactions between agents: i) acting in isolation where the agents are attempting to achieve their targets solely though their own actions ii) sharing information where each agent is aware of the species representation achieved within the other agent’s conservation network and, iii) pooling resources where agents combine their resources and undertake conservation actions as a single entity. The latter two interactions represent different types of collaborations and in each scenario we determine the cost savings from sharing information or pooling resources. In each case we examined the utility of these interactions from the viewpoint of the combined conservation network resulting from both agents' actions, as well as from each agent’s individual perspective. The costs for each agent to achieve their objectives varied depending on the order in which the agents acted, the type of interaction between agents, and the specific goals of each agent. There were significant cost savings from increased collaboration via sharing information in the NGO-NGO scenario were the agent’s representation goals were mutually exclusive (in terms of specie targeted). In the NGO-Gov and Gov-NGO scenarios, collaboration generated much smaller savings. If the two agents collaborate by pooling resources there are multiple ways the total cost could be shared between both agents. For each scenario we investigate the costs and benefits for all possible cost sharing proportions. We find that there are a range of cost sharing proportions where both agents can benefit in the NGO-NGO scenarios while the NGO-Gov and Gov-NGO scenarios again showed little benefit. Although the model presented here has a range of simplifying assumptions, it demonstrates that the value of collaboration can vary significantly in different situations. In most cases, collaborating would have associated costs and these costs need to be weighed against the potential benefits from collaboration. The model demonstrates a method for determining the range of collaboration costs that would result in collaboration providing an efficient use of scarce conservation resources.
Resumo:
The loss of habitat and biodiversity worldwide has led to considerable resources being spent on conservation interventions. Prioritising these actions is challenging due to the complexity of the problem and because there can be multiple actors undertaking conservation actions, often with divergent or partially overlapping objectives. We explore this issue with a simulation study involving two agents sequentially purchasing land for the conservation of multiple species using three scenarios comprising either divergent or partially overlapping objectives between the agents. The first scenario investigates the situation where both agents are targeting different sets of threatened species. The second and third scenarios represent a case where a government agency attempts to implement a complementary conservation network representing 200 species, while a non-government organisation is focused on achieving additional protection for the ten rarest species. Simulated input data was generated using distributions taken from real data to model the cost of parcels, and the rarity and co-occurrence of species. We investigated three types of collaborative interactions between agents: acting in isolation, sharing information and pooling resources with the third option resulting in the agents combining their resources and effectively acting as a single entity. In each scenario we determine the cost savings when an agent moves from acting in isolation to either sharing information or pooling resources with the other agent. The model demonstrates how the value of collaboration can vary significantly in different situations. In most cases, collaborating would have associated costs and these costs need to be weighed against the potential benefits from collaboration. Our model demonstrates a method for determining the range of costs that would result in collaboration providing an efficient use of scarce conservation resources.
Resumo:
This paper examines the construction of a strategic plan as a communicative process. Drawing on Ricoeur’s concepts of decontextualization and recontextualization, we conceptualize strategic planning activities as being constituted through the iterative and recursive relationship of talk and text. Based on an in-depth case study, our findings show how multiple actors engage in a formal strategic planning process which is manifested in a written strategy document. This document is thus central in the iterative talk to text cycles. As individuals express their interpretations of the current strategic plan in talk, they are able to make amendments to the text, which then shape future textual versions of the plan. This cycle is repeated in a recursive process, in which the meanings attributed to talk and text increasingly converge within a final agreed plan. We develop our findings into a process model of the communication process that explains how texts become more authoritative over time and, in doing so, how they inscribe power relationships and social order within organizations. These findings contribute to the literature on strategic planning and on organization as a communication process.
Resumo:
This study proposes an integrated analytical framework for effective management of project risks using combined multiple criteria decision-making technique and decision tree analysis. First, a conceptual risk management model was developed through thorough literature review. The model was then applied through action research on a petroleum oil refinery construction project in the Central part of India in order to demonstrate its effectiveness. Oil refinery construction projects are risky because of technical complexity, resource unavailability, involvement of many stakeholders and strict environmental requirements. Although project risk management has been researched extensively, practical and easily adoptable framework is missing. In the proposed framework, risks are identified using cause and effect diagram, analysed using the analytic hierarchy process and responses are developed using the risk map. Additionally, decision tree analysis allows modelling various options for risk response development and optimises selection of risk mitigating strategy. The proposed risk management framework could be easily adopted and applied in any project and integrated with other project management knowledge areas.
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
This research has been undertaken to determine how successful multi-organisational enterprise strategy is reliant on the correct type of Enterprise Resource Planning (ERP) information systems being used. However there appears to be a dearth of research as regards strategic alignment between ERP systems development and multi-organisational enterprise governance as guidelines and frameworks to assist practitioners in making decision for multi-organisational collaboration supported by different types of ERP systems are still missing from theoretical and empirical perspectives. This calls for this research which investigates ERP systems development and emerging practices in the management of multi-organisational enterprises (i.e. parts of companies working with parts of other companies to deliver complex product-service systems) and identify how different ERP systems fit into different multi-organisational enterprise structures, in order to achieve sustainable competitive success. An empirical inductive study was conducted using the Grounded Theory-based methodological approach based on successful manufacturing and service companies in the UK and China. This involved an initial pre-study literature review, data collection via 48 semi-structured interviews with 8 companies delivering complex products and services across organisational boundaries whilst adopting ERP systems to support their collaborative business strategies – 4 cases cover printing, semiconductor manufacturing, and parcel distribution industries in the UK and 4 cases cover crane manufacturing, concrete production, and banking industries in China in order to form a set of 29 tentative propositions that have been validated via a questionnaire receiving 116 responses from 16 companies. The research has resulted in the consolidation of the validated propositions into a novel concept referred to as the ‘Dynamic Enterprise Reference Grid for ERP’ (DERG-ERP) which draws from multiple theoretical perspectives. The core of the DERG-ERP concept is a contingency management framework which indicates that different multi-organisational enterprise paradigms and the supporting ERP information systems are not the result of different strategies, but are best considered part of a strategic continuum with the same overall business purpose of multi-organisational cooperation. At different times and circumstances in a partnership lifecycle firms may prefer particular multi-organisational enterprise structures and the use of different types of ERP systems to satisfy business requirements. Thus the DERG-ERP concept helps decision makers in selecting, managing and co-developing the most appropriate multi-organistional enterprise strategy and its corresponding ERP systems by drawing on core competence, expected competitiveness, and information systems strategic capabilities as the main contingency factors. Specifically, this research suggests that traditional ERP(I) systems are associated with Vertically Integrated Enterprise (VIE); whilst ERPIIsystems can be correlated to Extended Enterprise (EE) requirements and ERPIII systems can best support the operations of Virtual Enterprise (VE). The contribution of this thesis is threefold. Firstly, this work contributes to a gap in the extant literature about the best fit between ERP system types and multi-organisational enterprise structure types; and proposes a new contingency framework – the DERG-ERP, which can be used to explain how and why enterprise managers need to change and adapt their ERP information systems in response to changing business and operational requirements. Secondly, with respect to a priori theoretical models, the new DERG-ERP has furthered multi-organisational enterprise management thinking by incorporating information system strategy, rather than purely focusing on strategy, structural, and operational aspects of enterprise design and management. Simultaneously, the DERG-ERP makes theoretical contributions to the current IS Strategy Formulation Model which does not explicitly address multi-organisational enterprise governance. Thirdly, this research clarifies and emphasises the new concept and ideas of future ERP systems (referred to as ERPIII) that are inadequately covered in the extant literature. The novel DERG-ERP concept and its elements have also been applied to 8 empirical cases to serve as a practical guide for ERP vendors, information systems management, and operations managers hoping to grow and sustain their competitive advantage with respect to effective enterprise strategy, enterprise structures, and ERP systems use; referred to in this thesis as the “enterprisation of operations”.
Resumo:
Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.
Resumo:
In September 2002, the State of Florida implemented a new retirement structure for those employed in the Florida Public School System. Teachers were given the option to maintain their existing defined benefit plan or choose the newly offered defined contribution plan. The variables that affect planning for retirement are innumerable. Identifying the most significant variables is essential to understanding how one plans for retirement. ^ This study examined the relationship between hypothesized psychosocial and demographic factors and an individual's level of pre-retirement planning. The criterion variable, the level of pre-retirement planning, comprised two concepts. First, the time spent thinking about retirement was determined by the score an individual received on a pre-retirement planning scale. This scale included the concepts of information gathering, goals, anticipated resources, and long-range planning. Second, implementation of retirement plan procedures was determined by the percentage an individual annually deferred to retirement. ^ The survey used for data collection contained 50 close-ended items. It was distributed to all full-time teachers in nine randomly selected elementary, middle, and senior high schools throughout Miami-Dade County Public Schools. Multiple regression and crosstabulation indicated that math anxiety, general risk, years of service, and total family income were significant predictors of the level of pre-retirement planning, as measured by the pre-retirement planning scale. In addition, the statistical analysis indicated that math anxiety, internal locus of control, years of service, and total family income were significant predictors of the level pre-retirement planning, as measured by the amount deferred to retirement. An individual's level of math anxiety and family income were the two factors that were the most significant predictors for both concepts on the level of pre-retirement planning. ^ Based on the findings of the study, recommendations focused on assessing an individual's level of math anxiety and educating teachers, particularly pre-service candidates, about the factors that affect pre-retirement planning. Further research should investigate the benefit of such educational programs. ^
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
Resumo:
Rapid population increase and booming economic growth have caused a significant escalation in car ownership in many cities, leading to additional or, multiple traffic problems on congested roadways. The increase of automobiles is generating a significant amount of congestion and pollution in many cities. It has become necessary to find a solution to the ever worsening traffic problems in our cities. Building more roadways is nearly impossible due to the limitations of right-of-way in cities. Studies have shown that guideway transit could provide effective transportation and could stimulate land development. The Medium-Capacity Guideway Transit (MCGT) is one of the alternatives to solve this problem. The objective of this research was to better understand the characteristics of MCGT systems, to investigate the existing MCGT systems around the world and determine the main factors behind the planning of successful systems, and to develop a MCGT planning guide. The factors utilized in this study were determined and were analyzed using Excel. A MCGT Planning Guide was developed using Microsoft Visual Basic. ^ A MCGT was defined as a transit system whose capacity can carry up to 20,000 passengers per hour per direction (pphpd). The results shown that Light Rail Transit (LRT) is favored when peak hour demand is less than 13,000 pphpd. Automated People Mover (APM) is favored when the peak hour demand is more than 18,000 pphpd. APM systems could save up to three times the waiting time cost compared to that of the LRT. If comfort and convenience are important, then using an APM does make sense. However, if cost is the critical factor, then LRT will make more sense because it is reasonable service at a reasonable price. If travel time and safety (accident/crush) costs were included in calculating life-cycle “total” costs, the capital cost advantage of LRT disappeared and APM could become very competitive. The results also included a range of cost-performance criteria for MCGT systems that help planners, engineers, and decision-makers to select the most feasible system for their respective areas. ^
Resumo:
The objective of this study was to investigate the relationship of organizational culture and organizational climate on participant perceptions of collaborative capacity for planning, within the context of the Florida School Readiness Coalitions (FSRCs). Three hypotheses were proposed for study: First, that organizational culture would be correlated to organizational climate; second, that organizational culture would be correlated to collaborative capacity for planning; and the third that organizational climate would be correlated to collaborative capacity for planning. ^ A cross-sectional survey research design was used to obtain data from participants in 25 Florida School Readiness Coalitions. Pearson product-moment correlations were used to examine the association between the dependent variable, collaborative capacity for planning, and the independent variables, organizational culture and climate. Bivariate analyses revealed a significant level of association for five culture indicators to collaborative capacity for planning: motivation, interpersonal, service, supportive and individualistic indicators, and four climate indicators: cooperation, job satisfaction, organizational commitment, and role clarity. Findings suggest (a) a constructive culture and positive climate were present within the FSRCs during the period of study and (b) participants perceived that the collaborative capacity for planning existed. Hierarchical multiple regression, controlling for effects of participant demographics, were used to examine the degree to which organizational culture and climate predict collaborative capacity. The culture indicators, supportive and individualistic, and the climate indicator job satisfaction accounted for 46% of the variance in collaborative capacity for planning. No other indicators of the independent variables demonstrated significance. The findings suggests that (a) culture and climate should be studied together, (b) culture and climate are two constructs that may provide knowledge about the way community groups work together, and (c) the collaborative capacity of groups planning services such as the FSRCs may benefit through consideration of how culture and climate affect service planners' relationships, communication, and ability to achieve a mission or goal. Culture and climate may offer social workers new information about internal factors affecting the collaborative process. Further investigation of these constructs with other types of groups is warranted. ^
Resumo:
To promote the use of bicycle transportation mode in times of increasing urban traffic congestion, Broward County Metropolitan Planning Organization funded the development of a Web-based trip planner for cyclists. This presentation demonstrates the integration of the ArcGIS Server 9.3 environment with the ArcGIS JavaScript Extension for Google Maps API and the Google Local Search Control for Maps API. This allows the use of Google mashup GIS functionality, i.e., Google local search for selection of trip start, trip destination, and intermediate waypoints, and the integration of Google Maps base layers. The ArcGIS Network Analyst extension is used for the route search, where algorithms for fastest, safest, simplest, most scenic, and shortest routes are imbedded. This presentation also describes how attributes of the underlying network sources have been combined to facilitate the search for optimized routes.
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.