940 resultados para Multilinear polynomial
Resumo:
Let D be a link diagram with n crossings, sA and sB be its extreme states and |sAD| (respectively, |sBD|) be the number of simple closed curves that appear when smoothing D according to sA (respectively, sB). We give a general formula for the sum |sAD| + |sBD| for a k-almost alternating diagram D, for any k, characterizing this sum as the number of faces in an appropriate triangulation of an appropriate surface with boundary. When D is dealternator connected, the triangulation is especially simple, yielding |sAD| + |sBD| = n + 2 - 2k. This gives a simple geometric proof of the upper bound of the span of the Jones polynomial for dealternator connected diagrams, a result first obtained by Zhu [On Kauffman brackets, J. Knot Theory Ramifications6(1) (1997) 125–148.]. Another upper bound of the span of the Jones polynomial for dealternator connected and dealternator reduced diagrams, discovered historically first by Adams et al. [Almost alternating links, Topology Appl.46(2) (1992) 151–165.], is obtained as a corollary. As a new application, we prove that the Turaev genus is equal to the number k of dealternator crossings for any dealternator connected diagram
Resumo:
This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.
Resumo:
Social behavior is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks
Resumo:
We compute the E-polynomial of the character variety of representations of a rank r free group in SL(3,C). Expanding upon techniques of Logares, Muñoz and Newstead (Rev. Mat. Complut. 26:2 (2013), 635-703), we stratify the space of representations and compute the E-polynomial of each geometrically described stratum using fibrations. Consequently, we also determine the E-polynomial of its smooth, singular, and abelian loci and the corresponding Euler characteristic in each case. Along the way, we give a new proof of results of Cavazos and Lawton (Int. J. Math. 25:6 (2014), 1450058).
Resumo:
Efficient hardware implementations of arithmetic operations in the Galois field are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication are highly required. In this paper, bit-parallel polynomial basis multipliers over the binary field GF(2(m)) generated using type II irreducible pentanomials are considered. The multiplier here presented has the lowest time complexity known to date for similar multipliers based on this type of irreducible pentanomials.
Resumo:
"Supported in part by ... Grant no. US NSF GP-9665."
Resumo:
Bibliography: p. 16.
Resumo:
Vita: p. 105.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
The present study addresses the problem of predicting the properties of multicomponent systems from those of corresponding binary systems. Two types of multicomponent polynomial models have been analysed. A probabilistic interpretation of the parameters of the Polynomial model, which explicitly relates them with the Gibbs free energies of the generalised quasichemical reactions, is proposed. The presented treatment provides a theoretical justification for such parameters. A methodology of estimating the ternary interaction parameter from the binary ones is presented. The methodology provides a way in which the power series multicomponent models, where no projection is required, could be incorporated into the Calphad approach.
Resumo:
In some circumstances, there may be no scientific model of the relationship between X and Y that can be specified in advance and indeed the objective of the investigation may be to provide a ‘curve of best fit’ for predictive purposes. In such an example, the fitting of successive polynomials may be the best approach. There are various strategies to decide on the polynomial of best fit depending on the objectives of the investigation.