926 resultados para Multilevel Graph Partitioning
Electromagnetic and thermal design of a multilevel converter with high power density and reliability
Resumo:
Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.
Resumo:
ABSTRACTThis study enhances the principal-agent model by incorporating a multilevel perspective and differences among agency situations. A theoretical discussion is developed using a proposed intersection of methodological focuses and a descriptive-exemplificative hypothetical analysis. The analysis is applied to public expenditure social control in representative democracies, and as a result, a principal-agent model unfolds that incorporates a decision-making perspective and focuses on formulation, negotiation, articulation, and implementation competencies. Thus, it is possible to incorporate elements into the principal-agent model to make it more permeable to individual, group, and societal idiosyncrasies with respect to public expenditure social control.
Resumo:
The hyper-star interconnection network was proposed in 2002 to overcome the drawbacks of the hypercube and its variations concerning the network cost, which is defined by the product of the degree and the diameter. Some properties of the graph such as connectivity, symmetry properties, embedding properties have been studied by other researchers, routing and broadcasting algorithms have also been designed. This thesis studies the hyper-star graph from both the topological and algorithmic point of view. For the topological properties, we try to establish relationships between hyper-star graphs with other known graphs. We also give a formal equation for the surface area of the graph. Another topological property we are interested in is the Hamiltonicity problem of this graph. For the algorithms, we design an all-port broadcasting algorithm and a single-port neighbourhood broadcasting algorithm for the regular form of the hyper-star graphs. These algorithms are both optimal time-wise. Furthermore, we prove that the folded hyper-star, a variation of the hyper-star, to be maixmally fault-tolerant.
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
Contexte: L'obésité chez les jeunes représente aujourd’hui un problème de santé publique à l’échelle mondiale. Afin d’identifier des cibles potentielles pour des stratégies populationnelles de prévention, les liens entre les caractéristiques du voisinage, l’obésité chez les jeunes et les habitudes de vie font de plus en plus l’objet d’études. Cependant, la recherche à ce jour comporte plusieurs incohérences. But: L’objectif général de cette thèse est d’étudier la contribution de différentes caractéristiques du voisinage relativement à l’obésité chez les jeunes et les habitudes de vie qui y sont associées. Les objectifs spécifiques consistent à: 1) Examiner les associations entre la présence de différents commerces d’alimentation dans les voisinages résidentiels et scolaires des enfants et leurs habitudes alimentaires; 2) Examiner comment l’exposition à certaines caractéristiques du voisinage résidentiel détermine l’obésité au niveau familial (chez le jeune, la mère et le père), ainsi que l’obésité individuelle pour chaque membre de la famille; 3) Identifier des combinaisons de facteurs de risque individuels, familiaux et du voisinage résidentiel qui prédisent le mieux l’obésité chez les jeunes, et déterminer si ces profils de facteurs de risque prédisent aussi un changement dans l’obésité après un suivi de deux ans. Méthodes: Les données proviennent de l’étude QUALITY, une cohorte québécoise de 630 jeunes, âgés de 8-10 ans au temps 1, avec une histoire d’obésité parentale. Les voisinages de 512 participants habitant la Région métropolitaine de Montréal ont été caractérisés à l’aide de : 1) données spatiales provenant du recensement et de bases de données administratives, calculées pour des zones tampons à partir du réseau routier et centrées sur le lieu de la résidence et de l’école; et 2) des observations menées par des évaluateurs dans le voisinage résidentiel. Les mesures du voisinage étudiées se rapportent aux caractéristiques de l’environnement bâti, social et alimentaire. L’obésité a été estimée aux temps 1 et 2 à l’aide de l’indice de masse corporelle (IMC) calculé à partir du poids et de la taille mesurés. Les habitudes alimentaires ont été mesurées au temps 1 à l'aide de trois rappels alimentaires. Les analyses effectuées comprennent, entres autres, des équations d'estimation généralisées, des régressions multiniveaux et des analyses prédictives basées sur des arbres de décision. Résultats: Les résultats démontrent la présence d’associations avec l’obésité chez les jeunes et les habitudes alimentaires pour certaines caractéristiques du voisinage. En particulier, la présence de dépanneurs et de restaurants-minutes dans le voisinage résidentiel et scolaire est associée avec de moins bonnes habitudes alimentaires. La présence accrue de trafic routier, ainsi qu’un faible niveau de prestige et d’urbanisation dans le voisinage résidentiel sont associés à l’obésité familiale. Enfin, les résultats montrent qu’habiter un voisinage obésogène, caractérisé par une défavorisation socioéconomique, la présence de moins de parcs et de plus de dépanneurs, prédit l'obésité chez les jeunes lorsque combiné à la présence de facteurs de risque individuels et familiaux. Conclusion: Cette thèse contribue aux écrits sur les voisinages et l’obésité chez les jeunes en considérant à la fois l'influence potentielle du voisinage résidentiel et scolaire ainsi que l’influence de l’environnement familial, en utilisant des méthodes objectives pour caractériser le voisinage et en utilisant des méthodes statistiques novatrices. Les résultats appuient en outre la notion que les efforts de prévention de l'obésité doivent cibler les multiples facteurs de risque de l'obésité chez les jeunes dans les environnements bâtis, sociaux et familiaux de ces jeunes.
Resumo:
Study Design. Reliability study. Objectives. To assess between-acquisition reliability of new multilevel trunk cross sections measurements, in order to define what is a real change when comparing 2 trunk surface acquisitions of a same patient, before and after surgery or throughout the clinical monitoring. Summary of Background Data. Several cross-sectional surface measurements have been proposed in the literature for noninvasive assessment of trunk deformity in patients with adolescent idiopathic scoliosis (AIS). However, only the maximum values along the trunk are evaluated and used for monitoring progression and assessing treatment outcome. Methods. Back surface rotation (BSR), trunk rotation (TR), and coronal and sagittal trunk deviation are computed on 300 cross sections of the trunk. Each set of 300 measures is represented as a single functional data, using a set of basis functions. To evaluate between-acquisition variability at all trunk levels, a test-retest reliability study is conducted on 35 patients with AIS. A functional correlation analysis is also carried out to evaluate any redundancy between the measurements. Results. Each set of 300 measures was successfully described using only 10 basis functions. The test-retest reliability of the functional measurements is good to very good all over the trunk, except above the shoulders level. The typical errors of measurement are between 1.20° and 2.2° for the rotational measures and between 2 and 6 mm for deviation measures. There is a very strong correlation between BSR and TR all over the trunk, a moderate correlation between coronal trunk deviation and both BSR and TR, and no correlation between sagittal trunk deviation and any other measurement. Conclusion. This novel representation of trunk surface measurements allows for a global assessment of trunk surface deformity. Multilevel trunk measurements provide a broader perspective of the trunk deformity and allow a reliable multilevel monitoring during clinical follow-up of patients with AIS and a reliable assessment of the esthetic outcome after surgery.
Resumo:
In this paper, we study the domination number, the global dom ination number, the cographic domination number, the global co graphic domination number and the independent domination number of all the graph products which are non-complete extended p-sums (NEPS) of two graphs.
Resumo:
We define a new graph operator called the P3 intersection graph, P3(G)- the intersection graph of all induced 3-paths in G. A characterization of graphs G for which P-3 (G) is bipartite is given . Forbidden subgraph characterization for P3 (G) having properties of being chordal , H-free, complete are also obtained . For integers a and b with a > 1 and b > a - 1, it is shown that there exists a graph G such that X(G) = a, X(P3( G)) = b, where X is the chromatic number of G. For the domination number -y(G), we construct graphs G such that -y(G) = a and -y (P3(G)) = b for any two positive numbers a > 1 and b. Similar construction for the independence number and radius, diameter relations are also discussed.
Resumo:
Abstract. The edge C4 graph E4(G) of a graph G has all the edges of Gas its vertices, two vertices in E4(G) are adjacent if their corresponding edges in G are either incident or are opposite edges of some C4. In this paper, characterizations for E4(G) being connected, complete, bipartite, tree etc are given. We have also proved that E4(G) has no forbidden subgraph characterization. Some dynamical behaviour such as convergence, mortality and touching number are also studied
Resumo:
Abstract. The paper deals with graph operators-the Gallai graphs and the anti-Gallai graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free for any finite graph H. The case of complement reducible graphs-cographs is discussed in detail. Some relations between the chromatic number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs are also obtained.
Resumo:
Department of Mathematics, Cochin University of Science and Technology