905 resultados para Multi-objective optimization problem
Resumo:
In the present work, the multi-objective optimization by genetic algorithms is investigated and applied to heat transfer problems. Firstly, the work aims to compare different reproduction processes employed by genetic algorithms and two new promising processes are suggested. Secondly, in this work two heat transfer problems are studied under the multi-objective point of view. Specifically, the two cases studied are the wavy fins and the corrugated wall channel. Both these cases have already been studied by a single objective optimizer. Therefore, this work aims to extend the previous works in a more comprehensive study.
Resumo:
Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.
Resumo:
Wireless sensor networks (WSNs) have shown their potentials in various applications, which bring a lot of benefits to users from both research and industrial areas. For many setups, it is envisioned thatWSNs will consist of tens to hundreds of nodes that operate on small batteries. However due to the diversity of the deployed environments and resource constraints on radio communication, sensing ability and energy supply, it is a very challenging issue to plan optimized WSN topology and predict its performance before real deployment. During the network planning phase, the connectivity, coverage, cost, network longevity and service quality should all be considered. Therefore it requires designers coping with comprehensive and interdisciplinary knowledge, including networking, radio engineering, embedded system and so on, in order to efficiently construct a reliable WSN for any specific types of environment. Nowadays there is still a lack of the analysis and experiences to guide WSN designers to efficiently construct WSN topology successfully without many trials. Therefore, simulation is a feasible approach to the quantitative analysis of the performance of wireless sensor networks. However the existing planning algorithms and tools, to some extent, have serious limitations to practically design reliable WSN topology: Only a few of them tackle the 3D deployment issue, and an overwhelming number of works are proposed to place devices in 2D scheme. Without considering the full dimension, the impacts of environment to the performance of WSN are not completely studied, thus the values of evaluated metrics such as connectivity and sensing coverage are not sufficiently accurate to make proper decision. Even fewer planning methods model the sensing coverage and radio propagation by considering the realistic scenario where obstacles exist. Radio signals propagate with multi-path phenomenon in the real world, in which direct paths, reflected paths and diffracted paths contribute to the received signal strength. Besides, obstacles between the path of sensor and objects might block the sensing signals, thus create coverage hole in the application. None of the existing planning algorithms model the network longevity and packet delivery capability properly and practically. They often employ unilateral and unrealistic formulations. The optimization targets are often one-sided in the current works. Without comprehensive evaluation on the important metrics, the performance of planned WSNs can not be reliable and entirely optimized. Modeling of environment is usually time consuming and the cost is very high, while none of the current works figure out any method to model the 3D deployment environment efficiently and accurately. Therefore many researchers are trapped by this issue, and their algorithms can only be evaluated in the same scenario, without the possibility to test the robustness and feasibility for implementations in different environments. In this thesis, we propose a novel planning methodology and an intelligent WSN planning tool to assist WSN designers efficiently planning reliable WSNs. First of all, a new method is proposed to efficiently and automatically model the 3D indoor and outdoor environments. To the best of our knowledge, this is the first time that the advantages of image understanding algorithm are applied to automatically reconstruct 3D outdoor and indoor scenarios for signal propagation and network planning purpose. The experimental results indicate that the proposed methodology is able to accurately recognize different objects from the satellite images of the outdoor target regions and from the scanned floor plan of indoor area. Its mechanism offers users a flexibility to reconstruct different types of environment without any human interaction. Thereby it significantly reduces human efforts, cost and time spent on reconstructing a 3D geographic database and allows WSN designers concentrating on the planning issues. Secondly, an efficient ray-tracing engine is developed to accurately and practically model the radio propagation and sensing signal on the constructed 3D map. The engine contributes on efficiency and accuracy to the estimated results. By using image processing concepts, including the kd-tree space division algorithm and modified polar sweep algorithm, the rays are traced efficiently without detecting all the primitives in the scene. The radio propagation model iv is proposed, which emphasizes not only the materials of obstacles but also their locations along the signal path. The sensing signal of sensor nodes, which is sensitive to the obstacles, is benefit from the ray-tracing algorithm via obstacle detection. The performance of this modelling method is robust and accurate compared with conventional methods, and experimental results imply that this methodology is suitable for both outdoor urban scenes and indoor environments. Moreover, it can be applied to either GSM communication or ZigBee protocol by varying frequency parameter of the radio propagation model. Thirdly, WSN planning method is proposed to tackle the above mentioned challenges and efficiently deploy reliable WSNs. More metrics (connectivity, coverage, cost, lifetime, packet latency and packet drop rate) are modeled more practically compared with other works. Especially 3D ray tracing method is used to model the radio link and sensing signal which are sensitive to the obstruction of obstacles; network routing is constructed by using AODV protocol; the network longevity, packet delay and packet drop rate are obtained via simulating practical events in WSNet simulator, which to the best of our knowledge, is the first time that network simulator is involved in a planning algorithm. Moreover, a multi-objective optimization algorithm is developed to cater for the characteristics of WSNs. The capability of providing multiple optimized solutions simultaneously allows users making their own decisions accordingly, and the results are more comprehensively optimized compared with other state-of-the-art algorithms. iMOST is developed by integrating the introduced algorithms, to assist WSN designers efficiently planning reliable WSNs for different configurations. The abbreviated name iMOST stands for an Intelligent Multi-objective Optimization Sensor network planning Tool. iMOST contributes on: (1) Convenient operation with a user-friendly vision system; (2) Efficient and automatic 3D database reconstruction and fast 3D objects design for both indoor and outdoor environments; (3) It provides multiple multi-objective optimized 3D deployment solutions and allows users to configure the network properties, hence it can adapt to various WSN applications; (4) Deployment solutions in the 3D space and the corresponding evaluated performance are visually presented to users; and (5) The Node Placement Module of iMOST is available online as well as the source code of the other two rebuilt heuristics. Therefore WSN designers will be benefit from v this tool on efficiently constructing environment database, practically and efficiently planning reliable WSNs for both outdoor and indoor applications. With the open source codes, they are also able to compare their developed algorithms with ours to contribute to this academic field. Finally, solid real results are obtained for both indoor and outdoor WSN planning. Deployments have been realized for both indoor and outdoor environments based on the provided planning solutions. The measured results coincide well with the estimated results. The proposed planning algorithm is adaptable according to the WSN designer’s desirability and configuration, and it offers flexibility to plan small and large scale, indoor and outdoor 3D deployments. The thesis is organized in 7 chapters. In Chapter 1, WSN applications and motivations of this work are introduced, the state-of-the-art planning algorithms and tools are reviewed, challenges are stated out and the proposed methodology is briefly introduced. In Chapter 2, the proposed 3D environment reconstruction methodology is introduced and its performance is evaluated for both outdoor and indoor environment. The developed ray-tracing engine and proposed radio propagation modelling method are described in details in Chapter 3, their performances are evaluated in terms of computation efficiency and accuracy. Chapter 4 presents the modelling of important metrics of WSNs and the proposed multi-objective optimization planning algorithm, the performance is compared with the other state-of-the-art planning algorithms. The intelligent WSN planning tool iMOST is described in Chapter 5. RealWSN deployments are prosecuted based on the planned solutions for both indoor and outdoor scenarios, important data are measured and results are analysed in Chapter 6. Chapter 7 concludes the thesis and discusses about future works. vi Resumen en Castellano Las redes de sensores inalámbricas (en inglés Wireless Sensor Networks, WSNs) han demostrado su potencial en diversas aplicaciones que aportan una gran cantidad de beneficios para el campo de la investigación y de la industria. Para muchas configuraciones se prevé que las WSNs consistirán en decenas o cientos de nodos que funcionarán con baterías pequeñas. Sin embargo, debido a la diversidad de los ambientes para desplegar las redes y a las limitaciones de recursos en materia de comunicación de radio, capacidad de detección y suministro de energía, la planificación de la topología de la red y la predicción de su rendimiento es un tema muy difícil de tratar antes de la implementación real. Durante la fase de planificación del despliegue de la red se deben considerar aspectos como la conectividad, la cobertura, el coste, la longevidad de la red y la calidad del servicio. Por lo tanto, requiere de diseñadores con un amplio e interdisciplinario nivel de conocimiento que incluye la creación de redes, la ingeniería de radio y los sistemas embebidos entre otros, con el fin de construir de manera eficiente una WSN confiable para cualquier tipo de entorno. Hoy en día todavía hay una falta de análisis y experiencias que orienten a los diseñadores de WSN para construir las topologías WSN de manera eficiente sin realizar muchas pruebas. Por lo tanto, la simulación es un enfoque viable para el análisis cuantitativo del rendimiento de las redes de sensores inalámbricos. Sin embargo, los algoritmos y herramientas de planificación existentes tienen, en cierta medida, serias limitaciones para diseñar en la práctica una topología fiable de WSN: Sólo unos pocos abordan la cuestión del despliegue 3D mientras que existe una gran cantidad de trabajos que colocan los dispositivos en 2D. Si no se analiza la dimensión completa (3D), los efectos del entorno en el desempeño de WSN no se estudian por completo, por lo que los valores de los parámetros evaluados, como la conectividad y la cobertura de detección, no son lo suficientemente precisos para tomar la decisión correcta. Aún en menor medida los métodos de planificación modelan la cobertura de los sensores y la propagación de la señal de radio teniendo en cuenta un escenario realista donde existan obstáculos. Las señales de radio en el mundo real siguen una propagación multicamino, en la que los caminos directos, los caminos reflejados y los caminos difractados contribuyen a la intensidad de la señal recibida. Además, los obstáculos entre el recorrido del sensor y los objetos pueden bloquear las señales de detección y por lo tanto crear áreas sin cobertura en la aplicación. Ninguno de los algoritmos de planificación existentes modelan el tiempo de vida de la red y la capacidad de entrega de paquetes correctamente y prácticamente. A menudo se emplean formulaciones unilaterales y poco realistas. Los objetivos de optimización son a menudo tratados unilateralmente en los trabajos actuales. Sin una evaluación exhaustiva de los parámetros importantes, el rendimiento previsto de las redes inalámbricas de sensores no puede ser fiable y totalmente optimizado. Por lo general, el modelado del entorno conlleva mucho tiempo y tiene un coste muy alto, pero ninguno de los trabajos actuales propone algún método para modelar el entorno de despliegue 3D con eficiencia y precisión. Por lo tanto, muchos investigadores están limitados por este problema y sus algoritmos sólo se pueden evaluar en el mismo escenario, sin la posibilidad de probar la solidez y viabilidad para las implementaciones en diferentes entornos. En esta tesis, se propone una nueva metodología de planificación así como una herramienta inteligente de planificación de redes de sensores inalámbricas para ayudar a los diseñadores a planificar WSNs fiables de una manera eficiente. En primer lugar, se propone un nuevo método para modelar demanera eficiente y automática los ambientes interiores y exteriores en 3D. Según nuestros conocimientos hasta la fecha, esta es la primera vez que las ventajas del algoritmo de _image understanding_se aplican para reconstruir automáticamente los escenarios exteriores e interiores en 3D para analizar la propagación de la señal y viii la planificación de la red. Los resultados experimentales indican que la metodología propuesta es capaz de reconocer con precisión los diferentes objetos presentes en las imágenes satelitales de las regiones objetivo en el exterior y de la planta escaneada en el interior. Su mecanismo ofrece a los usuarios la flexibilidad para reconstruir los diferentes tipos de entornos sin ninguna interacción humana. De este modo se reduce considerablemente el esfuerzo humano, el coste y el tiempo invertido en la reconstrucción de una base de datos geográfica con información 3D, permitiendo así que los diseñadores se concentren en los temas de planificación. En segundo lugar, se ha desarrollado un motor de trazado de rayos (en inglés ray tracing) eficiente para modelar con precisión la propagación de la señal de radio y la señal de los sensores en el mapa 3D construido. El motor contribuye a la eficiencia y la precisión de los resultados estimados. Mediante el uso de los conceptos de procesamiento de imágenes, incluyendo el algoritmo del árbol kd para la división del espacio y el algoritmo _polar sweep_modificado, los rayos se trazan de manera eficiente sin la detección de todas las primitivas en la escena. El modelo de propagación de radio que se propone no sólo considera los materiales de los obstáculos, sino también su ubicación a lo largo de la ruta de señal. La señal de los sensores de los nodos, que es sensible a los obstáculos, se ve beneficiada por la detección de objetos llevada a cabo por el algoritmo de trazado de rayos. El rendimiento de este método de modelado es robusto y preciso en comparación con los métodos convencionales, y los resultados experimentales indican que esta metodología es adecuada tanto para escenas urbanas al aire libre como para ambientes interiores. Por otra parte, se puede aplicar a cualquier comunicación GSM o protocolo ZigBee mediante la variación de la frecuencia del modelo de propagación de radio. En tercer lugar, se propone un método de planificación de WSNs para hacer frente a los desafíos mencionados anteriormente y desplegar redes de sensores fiables de manera eficiente. Se modelan más parámetros (conectividad, cobertura, coste, tiempo de vida, la latencia de paquetes y tasa de caída de paquetes) en comparación con otros trabajos. Especialmente el método de trazado de rayos 3D se utiliza para modelar el enlace de radio y señal de los sensores que son sensibles a la obstrucción de obstáculos; el enrutamiento de la red se construye utilizando el protocolo AODV; la longevidad de la red, retardo de paquetes ix y tasa de abandono de paquetes se obtienen a través de la simulación de eventos prácticos en el simulador WSNet, y según nuestros conocimientos hasta la fecha, es la primera vez que simulador de red está implicado en un algoritmo de planificación. Por otra parte, se ha desarrollado un algoritmo de optimización multi-objetivo para satisfacer las características de las redes inalámbricas de sensores. La capacidad de proporcionar múltiples soluciones optimizadas de forma simultánea permite a los usuarios tomar sus propias decisiones en consecuencia, obteniendo mejores resultados en comparación con otros algoritmos del estado del arte. iMOST se desarrolla mediante la integración de los algoritmos presentados, para ayudar de forma eficiente a los diseñadores en la planificación de WSNs fiables para diferentes configuraciones. El nombre abreviado iMOST (Intelligent Multi-objective Optimization Sensor network planning Tool) representa una herramienta inteligente de planificación de redes de sensores con optimización multi-objetivo. iMOST contribuye en: (1) Operación conveniente con una interfaz de fácil uso, (2) Reconstrucción eficiente y automática de una base de datos con información 3D y diseño rápido de objetos 3D para ambientes interiores y exteriores, (3) Proporciona varias soluciones de despliegue optimizadas para los multi-objetivo en 3D y permite a los usuarios configurar las propiedades de red, por lo que puede adaptarse a diversas aplicaciones de WSN, (4) las soluciones de implementación en el espacio 3D y el correspondiente rendimiento evaluado se presentan visualmente a los usuarios, y (5) El _Node Placement Module_de iMOST está disponible en línea, así como el código fuente de las otras dos heurísticas de planificación. Por lo tanto los diseñadores WSN se beneficiarán de esta herramienta para la construcción eficiente de la base de datos con información del entorno, la planificación práctica y eficiente de WSNs fiables tanto para aplicaciones interiores y exteriores. Con los códigos fuente abiertos, son capaces de comparar sus algoritmos desarrollados con los nuestros para contribuir a este campo académico. Por último, se obtienen resultados reales sólidos tanto para la planificación de WSN en interiores y exteriores. Los despliegues se han realizado tanto para ambientes de interior y como para ambientes de exterior utilizando las soluciones de planificación propuestas. Los resultados medidos coinciden en gran medida con los resultados estimados. El algoritmo de planificación x propuesto se adapta convenientemente al deiseño de redes de sensores inalámbricas, y ofrece flexibilidad para planificar los despliegues 3D a pequeña y gran escala tanto en interiores como en exteriores. La tesis se estructura en 7 capítulos. En el Capítulo 1, se presentan las aplicaciones de WSN y motivaciones de este trabajo, se revisan los algoritmos y herramientas de planificación del estado del arte, se presentan los retos y se describe brevemente la metodología propuesta. En el Capítulo 2, se presenta la metodología de reconstrucción de entornos 3D propuesta y su rendimiento es evaluado tanto para espacios exteriores como para espacios interiores. El motor de trazado de rayos desarrollado y el método de modelado de propagación de radio propuesto se describen en detalle en el Capítulo 3, evaluándose en términos de eficiencia computacional y precisión. En el Capítulo 4 se presenta el modelado de los parámetros importantes de las WSNs y el algoritmo de planificación de optimización multi-objetivo propuesto, el rendimiento se compara con los otros algoritmos de planificación descritos en el estado del arte. La herramienta inteligente de planificación de redes de sensores inalámbricas, iMOST, se describe en el Capítulo 5. En el Capítulo 6 se llevan a cabo despliegues reales de acuerdo a las soluciones previstas para los escenarios interiores y exteriores, se miden los datos importantes y se analizan los resultados. En el Capítulo 7 se concluye la tesis y se discute acerca de los trabajos futuros.
Resumo:
Los regímenes fiscales que se aplican a los contratos de exploración y desarrollo de petróleo y gas, entre los propietarios del recurso natural (generalmente el país soberano representado por su gobierno) y las compañías operadoras internacionales (COI) que aportan capital, experiencia y tecnología, no han sabido responder a la reciente escalada de los precios del crudo y han dado lugar a que los países productores no estén recibiendo la parte de renta correspondiente al incremento de precios. Esto ha provocado una ola de renegociaciones llegándose incluso a la imposición unilateral de nuevos términos por parte de algunos gobiernos entre los que destacan el caso de Venezuela y Argentina, por ser los más radicales. El objetivo del presente trabajo es el estudio y diseño de un régimen fiscal que, en las actuales condiciones del mercado, consiga que los gobiernos optimicen sus ingresos incentivando la inversión. Para ello se simulan los efectos de siete tipos diferentes de fiscalidades aplicadas a dos yacimientos de características muy distintas y se valoran los resultados. El modelo utilizado para la simulación es el modelo de escenarios, ampliamente utilizado tanto por la comunidad académica como por la industria para comparar el comportamiento de diferentes regímenes fiscales. Para decidir cuál de las fiscalidades estudiadas es la mejor se emplea un método optimización multicriterio. Los criterios que se han aplicado para valorar los resultados recogen la opinión de expertos de la industria sobre qué factores se consideran deseables en un contrato a la hora invertir. El resultado permite delinear las características de un marco fiscal ideal del tipo acuerdo de producción compartida, sin royalties, con un límite alto de recuperación de crudo coste que permita recobrar todos los costes operativos y una parte de los de capital en cualquier escenario de precios, un reparto de los beneficios en función de un indicador de rentabilidad como es la TIR, con un mecanismo de recuperación de costes adicional (uplift) que incentive la inversión y con disposiciones que premien la exploración y más la de alto riesgo como la amortización acelerada de los gastos de capital o una ampliación de la cláusula de ringfence. Un contrato con estas características permitirá al gobierno optimizar los ingresos obtenidos de sus reservas de petróleo y gas maximizando la producción al atraer inversión para la exploración y mejorar la recuperación alargando la vida del yacimiento. Además al reducir el riesgo percibido por el inversor que recupera sus costes, menor será la rentabilidad exigida al capital invertido y por tanto mayor la parte de esos ingresos que irá a parar al gobierno del país productor. ABSTRACT Fiscal systems used in petroleum arrangements between the owners of the resource (usually a sovereign country represented by its government) and the international operating company (IOC) that provides capital, knowhow and technology, have failed to allocate profits from the recent escalation of oil prices and have resulted in producing countries not receiving the right share of that increase. This has caused a wave of renegotiations and even in some cases, like Venezuela and Argentina, government unilaterally imposed new terms. This paper aims to outline desirable features of a petroleum fiscal system, under current market conditions, for governments to maximize their revenues while encouraging investment. Firstly the impact of seven different types of fiscal regimes is studied with a simulation for two separate oil fields using the scenario approach. The scenario approach has been frequently employed by academic and business researchers to compare the performance of diverse fiscal regimes. In order to decide which of the fiscal regimes’ performance is best we used a multi-objective optimization decision making approach to assess the results. The criteria applied gather the preferences of a panel of industry experts about the desirable features of a contract when making investment decisions. The results show the characteristics of an ideal fiscal framework that closely resembles a production sharing contract, with no royalty payment and a high cost recovery limit that allows the IOC to recover all operating expenses and a share of its capital costs under any price scenario, a profit oil sharing mechanism based on a profitability indicator such as the ROR, with an uplift that allows to recover an additional percentage of capital costs and provisions that promote exploration investment, specially high-risk exploration, such as accelerated depreciation for capital costs and a wide definition of the ringfence clause. A contract with these features will allow governments to optimize overall revenues from its petroleum resources maximizing production by promoting investment on exploration and extending oil fields life. Also by reducing the investor’s perception of risk it will reduce the minimum return to capital required by the IOC and therefore it will increase the government share of those revenues.
Resumo:
Este trabalho é referente ao desenvolvimento de um calibrador multiobjetivo automático do modelo SWMM (Storm Water Management Model), e avaliação de algumas fontes de incertezas presentes no processo de calibração, visando à representação satisfatória da transformação chuva-vazão. O código foi escrito em linguagem C, e aplica os conceitos do método de otimização multiobjetivo NSGAII (Non Dominated Sorting Genetic Algorithm) com elitismo controlado, além de utilizar o código fonte do modelo SWMM para a determinação das vazões simuladas. Paralelamente, também foi criada uma interface visual, para melhorar a facilidade de utilização do calibrador. Os testes do calibrador foram aplicados a três sistemas diferentes: um sistema hipotético disponibilizado no pacote de instalação do SWMM; um sistema real de pequenas dimensões, denominado La Terraza, localizado no município de Sierra Vista, Arizona (EUA); e um sistema de maiores dimensões, a bacia hidrográfica do Córrego do Gregório, localizada no município de São Carlos (SP). Os resultados indicam que o calibrador construído apresenta, em geral, eficiência satisfatória, porém é bastante dependente da qualidade dos dados observados em campo e dos parâmetros de entrada escolhidos pelo usuário. Foi demonstrada a importância da escolha dos eventos utilizados na calibração, do estabelecimento de limites adequados nos valores das variáveis de decisão, da escolha das funções objetivo e, principalmente, da qualidade e representatividade dos dados de monitoramento pluvio e fluviométrico. Conclui-se que estes testes desenvolvidos contribuem para o entendimento mais aprofundado dos processos envolvidos na modelagem e calibração, possibilitando avanços na confiabilidade dos resultados da modelagem.
Resumo:
Este trabalho apresenta um modelo de otimização multiobjetivo aplicado ao projeto de concepção de submarinos convencionais (i.e. de propulsão dieselelétrica). Um modelo de síntese que permite a estimativa de pesos, volume, velocidade, carga elétrica e outras características de interesse para a o projeto de concepção é formulado. O modelo de síntese é integrado a um modelo de otimização multiobjetivo baseado em algoritmos genéticos (especificamente, o algoritmo NSGA II). A otimização multiobjetivo consiste na maximização da efetividade militar do submarino e na minimização de seu custo. A efetividade militar do submarino é representada por uma Medida Geral de Efetividade (OMOE) estabelecida por meio do Processo Analítico Hierárquico (AHP). O Custo Básico de Construção (BCC) do submarino é estimado a partir dos seus grupos de peso. Ao fim do processo de otimização, é estabelecida uma Fronteira de Pareto composta por soluções não dominadas. Uma dessas soluções é selecionada para refinamento preliminar e os resultados são discutidos. Subsidiariamente, esta dissertação apresenta discussão sucinta sobre aspectos históricos e operativos relacionados a submarinos, bem como sobre sua metodologia de projeto. Alguns conceitos de Arquitetura Naval, aplicada ao projeto dessas embarcações, são também abordados.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.
Resumo:
This paper presents a numerical study of a linear compressor cascade to investigate the effective end wall profiling rules for highly-loaded axial compressors. The first step in the research applies a correlation analysis for the different flow field parameters by a data mining over 600 profiling samples to quantify how variations of loss, secondary flow and passage vortex interact with each other under the influence of a profiled end wall. The result identifies the dominant role of corner separation for control of total pressure loss, providing a principle that only in the flow field with serious corner separation does the does the profiled end wall change total pressure loss, secondary flow and passage vortex in the same direction. Then in the second step, a multi-objective optimization of a profiled end wall is performed to reduce loss at design point and near stall point. The development of effective end wall profiling rules is based on the manner of secondary flow control rather than the geometry features of the end wall. Using the optimum end wall cases from the Pareto front, a quantitative tool for analyzing secondary flow control is employed. The driving force induced by a profiled end wall on different regions of end wall flow are subjected to a detailed analysis and identified for their positive/negative influences in relieving corner separation, from which the effective profiling rules are further confirmed. It is found that the profiling rules on a cascade show distinct differences at design point and near stall point, thus loss control of different operating points is generally independent.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
Autor proof
Resumo:
This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.