972 resultados para Morphological-changes
Resumo:
AbstractBackground:Although nutritional, metabolic and cardiovascular abnormalities are commonly seen in experimental studies of obesity, it is uncertain whether these effects result from the treatment or from body adiposity.Objective:To evaluate the influence of treatment and body composition on metabolic and cardiovascular aspects in rats receiving high saturated fat diet.Methods:Sixteen Wistar rats were used, distributed into two groups, the control (C) group, treated with isocaloric diet (2.93 kcal/g) and an obese (OB) group, treated with high-fat diet (3.64 kcal/g). The study period was 20 weeks. Analyses of nutritional behavior, body composition, glycemia, cholesterolemia, lipemia, systolic arterial pressure, echocardiography, and cardiac histology were performed.Results:High-fat diet associates with manifestations of obesity, accompanied by changes in glycemia, cardiomyocyte hypertrophy, and myocardial interstitial fibrosis. After adjusting for adiposity, the metabolic effects were normalized, whereas differences in morphometric changes between groups were maintained.Conclusion:It was concluded that adiposity body composition has a stronger association with metabolic disturbances in obese rodents, whereas the high-fat dietary intervention is found to be more related to cardiac morphological changes in experimental models of diet-induced obesity.
Resumo:
Abstract Background: Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective: To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods: Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results: Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion: The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction.
Resumo:
The morphological changes of the ovary and oviduct of 238 tropical snakes Bothrops jararaca (Wied, 1824) were determined. The ovarian mass presented a remarkable decrease in October, after ovulation, staying in low levels from November to March, during the gestational period. From April to September, it increased because of the ovarian follicles maturation. A gradual increase in oviduct weight was observed from October to March due to stages of embryonic development. A significant difference was observed between right and left ovary weight, and oviduct length, independently of the months considered.
Resumo:
The morphology of the ovaries in Uca rapax (Smith, 1870) was described based on macroscopic and microscopic analysis. Females were collected in Itamambuca mangrove, Ubatuba, state of São Paulo, Brazil. In the laboratory, 18 females had their ovaries removed and prepared for histology. Each gonad developmental stage was previously determined based on external and macroscopic morphology and afterwards each stage was microscopically described. The ovaries of U. rapax showed a pronounced macroscopic differentiation in size and coloration with the maturation of the gonad, with six ovarian developmental stages: immature, rudimentary, developing, developed, advanced and spent. During the vitellogenesis, the amount of oocytes in secondary stage increases in the ovary, resulting in a change in coloration of the gonad. Oogonias, primary oocytes, secondary oocytes and follicular cells were histologically described and measured. In females ovaries of U. rapax the modifications observed in the oocytes during the process of gonad maturation are similar to descriptions of gonads of other females of brachyuran crustaceans. The similarities are specially found in the morphological changes in the reproductive cells, and also in the presence and arrange of follicle cells during the process of ovary maturation. When external morphological characteristics of the gonads were compared to histological descriptions, it was possible to observe modifications that characterize the process in different developmental stages throughout the ovarian cycle and, consequently, the macroscopic classification of gonad stages agree with the modifications of the reproductive cells.
Resumo:
We present a description of osteological alterations observed in the tucuxi, Sotalia fluviatilis (Gervais, 1853) from a sample of 43 specimens. Fractures were the most frequent alterations in the sample (16%), occurring in various regions of the skeleton such as the ribs, hyoid apparatus, transverse and neural processes of vertebrae and scapula. We observed three individuals with ankylosis between the cervical vertebrae and two individuals with morphological changes (cranio-caudally elongated hemal arch and flattened cranial margin of the scapula). The only observed pathology was a case of osteomyelitis in the left dentary, which caused the loss of teeth, deformation of the associated alveoli and the formation of a medial fistula (lingual) for drainage of purulent material. This represents the first record of osteomyelitis in S. fluviatilis.
Resumo:
Chronic focal and diffuse myiocarditis with interstitial fibrosis developed in Swiss outbred mice and in the inbred AKR and A/J strains of mice which were chronically infected with several Trypanosoma cruzi strains belonging to three biological types (Type I, II and III). High incidence of electrocardiographic changes with predominance of intraventricular conduction disturbances, 1st. and 2nd. degree AV block, arrhythmias, comparable with those found in human Chagas' disease, were also present. Morphological study of the conduction tissue of the heart revealed inflammatory and fibrotic changes. The presence of inflammation in the inter-atrial septum almost always coincided with the inflammatory involvement of the ventricular conduction system. Focal inflammation was associated with vacuolization and focal necrosis of the specific fibers. Most of the lesions were seen affecting the His bundel (76.3% of the cases), the right bundle branch (73.3%), AV node (43.9%) and left bundle branch (37.5%). Correlation between morphological changes in the conduction tissue and electrocardiographic alteration occured in 53.0 to 62.5% of the cases, according to the experimental groups.
Resumo:
A panel of novel monoclonal antibodies was tested on the human entorhinal cortex for the recognition of age- and disease-related changes of neurofilament proteins (NF). Several antibodies identified phosphorylated NF-H subunit, which occurred preferentially in those aged between 60 and 80 years and were localized in degenerating neurons. Such neurons also contained neurofibrillary tangles, but neurofilament aggregates did not co-localize with tangles, nor did the quantity nor the number of NF-positive neurons correlate with the severity of Alzheimer's disease. This points to a susceptibility of NF in a subset of neurons for phosphorylation- and metabolically related morphological changes during neurodegeneration.
Resumo:
Objectives: The AMS 800TM is the current artificial urinary sphincter (AUS) for incontinence due to intrinsic sphincter deficiency. Despite good clinical results, technical failures inherent to the hydraulic mechanism or urethral ischemic injury contribute to revisions up to 60%. We are developing an electronic AUS, called ARTUS to overcome the rigors of AMS. The objective of this study was to evaluate the technical efficacy and tissue tolerance of the ARTUS system in an animal model.Methods: The ARTUS is composed by three parts: the contractile unit, a series of rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor. In the first phase a three-rings device was used while in the second phase a two-rings ARTUS was used. The device was implanted in 14 sheep divided in two groups of six and eight animals for study purpose. The first group aimed at bladder leak point pressure (BLPP) measurement and validation of the animal model; the second group aimed at verifying mid-term tissue tolerance by explants at twelve weeks. General animal tolerance was also evaluated.Results: The ARTUS system implantation was uneventful. When the system was activated, the BLPP was measured at 1.038±0.044 bar (mean±SD). Urethral tissue analysis did not show significant morphological changes. No infection and no sign of discomfort were noted in animals at 12 weeks.Conclusions: The ARTUS proved to be effective in continence achievement in this study. Histological results support our idea that a sequential alternative mode can avoid urethral atrophy and ischemia. Further technical developments are needed to verify long-term outcome and permit human use.
Resumo:
The moulting cycles of all larval instars (zoea I, zoea II, and megalopa) of the spider crab Maja brachydactyla Balss 1922 were studied in laboratory rearing experiments. Morphological changes in the epidermis and cuticle were photographically documented in daily intervals and assigned to successive stages of the moulting cycle (based on Drach's classification system). Our moult-stage characterizations are based on microscopical examination of integumental modifications mainly in the telson, using epidermal condensation, the degree of epidermal retraction (apolysis), and morphogenesis (mainly setagenesis) as criteria. In the zoea II and megalopa, the formation of new setae was also observed in larval appendages including the antenna, maxillule, maxilla, second maxilliped, pleopods, and uropods. As principal stages within the zoea I moulting cycle, we describe postmoult (Drach's stages A–B combined), intermoult (C), and premoult (D), the latter with three substages (D0, D1, and D2). In the zoea II and megalopa, D0 and D1 had to be combined, because morphogenesis (the main characteristic of D1) was unclear in the telson and did not occur synchronically in different appendices. The knowledge of the course and time scale of successive moult-cycle events can be used as a tool for the evaluation of the developmental state within individual larval instars, providing a morphological reference system for physiological and biochemical studies related to crab aquaculture.
Resumo:
A morphological study of the midgut of Lutzomyia intermedia, the primary vector of cutaneous leishmaniasis, in southeast Brazil, was conducted by light, scanning and transmission electron microscopy. The midgut is formed by a layer of epithelium of columnar cells on a non-cellular basal lamina, under which there is a musculature, which consists of circular and longitudinal muscular fibers. A tracheolar network is observed surrounding and penetrating in the musculature. Females were examined 12, 24, 48, 72 h and 5 days following a blood meal and were analyzed comparatively by transmission electron microscopy with starved females. In starved females, the epithelium of both the anterior and posterior sections of the midgut present whorl shaped rough endoplasmic reticulum. The posterior section does not present well-developed cellular structures such as mitochondria. Observations performed at 12, 24, 48 and 72 h after the blood meal showed morphological changes in the cellular structures in this section, and the presence of the peritrophic matrix up to 48 h after the blood meal. Digestion is almost complete and a few residues are detected in the lumen 72 h after blood feeding. Finally, on the 5th day after the blood meal all cellular structures present the original feature resembling that seen in starved sand flies. Morphometric data confirmed the morphological observations. Mitochondria, nuclei and microvilli of midgut epithelial cells are different in starved and blood fed females. The mitochondria present a similar profile in the epithelium of both the anterior and posterior section of the midgut, with higher dimension in starved females. The cell microvilli in the posterior section of the midgut of starved females are twice the size of those that had taken a blood meal. We concluded that there are changes in the midgut cellular structures of L. intermedia during the digestion of blood, which are in agreement with those described for other hematophagous diptera.
Resumo:
Astrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellular and molecular mechanisms are unknown. We show here in mice that connexin 30 controls hippocampal excitatory synaptic transmission through modulation of astroglial glutamate transport, which directly alters synaptic glutamate levels. Unexpectedly, we found that connexin 30 regulated cell adhesion and migration and that connexin 30 modulation of glutamate transport, occurring independently of its channel function, was mediated by morphological changes controlling insertion of astroglial processes into synaptic clefts. By setting excitatory synaptic strength, connexin 30 plays an important role in long-term synaptic plasticity and in hippocampus-based contextual memory. Taken together, these results establish connexin 30 as a critical regulator of synaptic strength by controlling the synaptic location of astroglial processes.
Resumo:
A comparative morphometric study was performed to identify host-induced morphological alterations in Schistosoma mansoni adult worms. A wild parasite population was obtained from a naturally infected rodent (Nectomys squamipes)and then recovered from laboratory infected C3H/He mice. Furthermore, allopatric worm populations maintained for long-term under laboratory conditions in Swiss Webster mice were passed on to N. squamipes. Suckers and genital system (testicular lobes, uterine egg, and egg spine) were analyzed by a digital system for image analysis. Confocal laser scanning microscopy (CLSM) showed details of the genital system (testicular lobes, vitelline glands, and ovary) and the tegument just below the ventral sucker. Significant morphological changes (p < 0.05) were detected in male worms in all experimental conditions, with no significant variability as assessed by CLSM. Significant changes (p < 0.05) were evident in females from the wild population related to their ovaries and vitelline glands, whereas allopatric females presented differences only in this last character. We conclude that S. mansoni worms present the phenotypic plasticity induced by modifications in the parasite's microenvironment, mainly during the first passage under laboratory conditions.
Resumo:
The blood flukes of mammals (Digenea: Schistosomatidae) are among trematodes unique whose adult worms have separeted sexes which are dissimilar in appearance. The developmental features, growth and organogenesis of Schistosoma mansoni were studied in Swiss Webster mice by a digital system for image analysis and confocal microscopy. Data so far obtained showed two phases with significative morphological changes at 3-4 weeks post-infection, and a gradual similar development onwards in the reproductive system and tegument. Our male-dependent phase demonstrated that mating occurs before sexual maturing. At week three, the majority of male worms (59%) had formed the gynaecophoric canal although testicular lobes and tegumental tubercles were absent. By this time, 33% females had an incipient ovary (without cellular differentiation). At week four, 77.2% males presented testicular lobes with few germinative cells while 26% had developing tegumental tubercles. The immature ovary was observed in 69% females. Suckers followed different pattern of growth between male and females. The size of oral and ventral suckers from six-week-old male worms grew abruptly (3.0 fold) more than that of three-week-old. In female worms, maximum growth was attained at week four, reducing in size thereafter. From sixth week onwards, all specimens showed the fully developed reproductive system. Probably, these features are morphological traits which schistosome has experienced from hermaphrodite to dioecy.
Resumo:
BACKGROUND: Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. METHODS: To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose-response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. RESULTS: Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose-response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. CONCLUSION: Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium accumulation is secondary to cell suffering and/or cell death. Local accumulation of ammonium in CNS, that may remain undetected in plasma and urine, may therefore play a key role in the neuropathogenesis of methylmalonic aciduria both during acute decompensations and in chronic phases. If confirmed in vivo, this finding might shift the current paradigm and result in novel therapeutic strategies.
Resumo:
BACKGROUND:: Mechanical forces play an important role in tissue neovascularization and are a constituent part of modern wound therapies. The mechanisms by which vacuum assisted closure (VAC) modulates wound angiogenesis are still largely unknown. OBJECTIVE:: To investigate how VAC treatment affects wound hypoxia and related profiles of angiogenic factors as well as to identify the anatomical characteristics of the resultant, newly formed vessels. METHODS:: Wound neovascularization was evaluated by morphometric analysis of CD31-stained wound cross-sections as well as by corrosion casting analysis. Wound hypoxia and mRNA expression of HIF-1α and associated angiogenic factors were evaluated by pimonidazole hydrochloride staining and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Vascular endothelial growth factor (VEGF) protein levels were determined by western blot analysis. RESULTS:: VAC-treated wounds were characterized by the formation of elongated vessels aligned in parallel and consistent with physiologically function, compared to occlusive dressing control wounds that showed formation of tortuous, disoriented vessels. Moreover, VAC-treated wounds displayed a well-oxygenated wound bed, with hypoxia limited to the direct proximity of the VAC-foam interface, where higher VEGF levels were found. By contrast, occlusive dressing control wounds showed generalized hypoxia, with associated accumulation of HIF-1α and related angiogenic factors. CONCLUSIONS:: The combination of established gradients of hypoxia and VEGF expression along with mechanical forces exerted by VAC therapy was associated with the formation of more physiological blood vessels compared to occlusive dressing control wounds. These morphological changes are likely a necessary condition for better wound healing.