970 resultados para Morphogenetic Protein-2
Resumo:
To investigate the luteal phase endometrial expression of leukemia inhibitor factor (LIF), insulin-like growth factor 1 (IGF-1), progesterone receptor (PR), claudin 4 (CLDN4), vascular-endothelial growth factor receptor 3 (VEGFR-3), bone morphogenetic protein 4 (BMP-4) and citokeratin 7 (CK-7), we obtained luteal phase endometrial samples from 52 women. Samples were dated and integrated using a tissue microarray (TMA). Samples were immunostained for LIF, IGF-1, PR, CLDN4, VEGFR-3, BMP-4 and CK-7. Frequencies of positive expressions at the early, mid and late luteal phases were compared by two proportions test. Concomitant expression of these proteins was assessed with Chi-square or Fischer`s test. The frequency of LIF was positively correlated to the frequency of IGF-1 (r = 0.99; p < 0.05) and PR (r = 0.99; p < 0.05), and the correlation between IGF-1 and PR tended to be significant (r = 0.98; p < 0.1). The expression of PR was associated with the absence of CLDN4 (p < 0.001). Thus, expression of LIF, IGF-1 and PR are correlated during the luteal phase, and immunohistochemistry for these proteins might be used to assist in the assessment of endometrial maturation. In addition, the expression of CLDN4 and PR was not concomitant, warranting further investigation on the relationship of their endometrial expression.
Resumo:
OBJECTIVE-Uncoupling protein 2 (UCP2) is a physiological downregulator of reactive oxygen species generation and plays an antiatherogenic role in the vascular wall. A common variant in the UCP2 promoter (-866G>A) modulates mRNA expression, with increased expression associated with the A allele. We investigated association of this variant with coronary artery disease (CAD) in two cohorts of type 2 diabetic subjects. RESEARCH DESIGN AND METHODS-We studied 3,122 subjects from the 6-year prospective Non-Insulin-Dependent Diabetes, Hypertension, Microalbuminuria, Cardiovascular Events, and Ramipril (DIABHYCAR) Study (14.9% of CAD incidence at follow-up). An independent, hospital-based cohort of 335 men, 52% of whom had CAD, was also studied. RESULTS-We observed an inverse association of the A allele with incident cases of CAD in a dominant model (hazard risk 0.88 [95% CI 0.80-0.96]; P = 0.006). Similar results were observed for baseline cases of CAD. Stratification by sex confirmed an allelic association with CAD in men, whereas no association was observed in women. All CAD phenotypes considered-myocardial infarction, angina pectoris, coronary artery bypass graft (CABG), and sudden death-contributed significantly to the association. Results were replicated in a cross-sectional study of an independent cohort (odds ratio 0.47 [95% CI 0.25-0.89]; P = 0.02 for a recessive model). CONCLUSIONS-The A allele of the -866G>A variant of UCP2 was associated with reduced risk of CAD in men with type 2 diabetes in a 6-year prospective study. Decreased risk of myocardial infarction, angina pectoris, CABG, and sudden death contributed individually and significantly to the reduction of CAD risk. This association was independent of other common CAD risk factors.
Resumo:
Bone deposition and bone resorption are ongoing dynamic processes, constituting bone remodeling. Some bone tumors, such as osteosarcoma (OS), stimulate focal bone deposition. OS is the most common primary bone tumor in children and young adults. A complex network of genes regulates bone remodeling and alterations in its expression levels can influence the genesis and progression of bone diseases, including OS. We hypothesized that the expression profiles of bone remodeling regulator genes would be correlated with OS biology and clinical features. We used real-time PCR to evaluate the mRNA levels of the tartrate-resistant acid phosphatase (ACP5), colony stimulating factor-1 (CSF1R), bone morphogenetic protein 7 (BMP7), collagen, type XI, alpha 2 (COL11A2), and protein tyrosine phosphatases zeta 1 (PTPRZ1) genes, in 30 OS tumor samples and correlated with clinical and histological data. All genes analyzed, except CSF1R, were differentially expressed when compared with normal bone expression profiles. In our results, OS patients with high levels of COL11A2 mRNA showed worse overall (p = 0.041) and event free survival (p = 0.037). Also, a trend for better overall survival was observed in patients with samples showing higher expression of BMP7 (p =0.067). COL11A2 overexpression and BMP7 underexpression could collaborate to OS tumor growth, through its central role in bone remodeling process. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1142-1148, 2010
Resumo:
Objective. The objective of this study was to investigate the mediators and the resident peritoneal cells involved in the neutrophil migration (NM) induced by mineral trioxide aggregate (MTA) in mice. Study design. MTA (25 mg/cavity) was injected into normal and pretreated peritoneal cavities (PC) with indomethacin (IND), dexamethasone (DEX), BWA4C, U75302, antimacrophage inflammatory protein-2 (MIP-2), and anti-interleukin-1 beta (IL-1 beta) antibodies and the NM was determined. The role of macrophage (MO) and mast cells (MAST) was determined by administration of thioglycollate 3% or 48/80 compound, respectively. The concentration of IL-1 beta and MIP-2 exudates was measured by ELISA. Results. MTA induced dose-and time-dependent NM into mice PC, with the participation of MO and MAST. NM was inhibited by DEX, BWA4C, and U75302, as well as anti-MIP-2 and anti-IL-1 beta antibodies. In the exudates, IL-1 beta and MIP-2 were detected. Conclusions. This study suggests that MTA induces NM via a mechanism dependent on MAST and MO mediated by IL-1 beta, MIP-2, and LTB(4).
Resumo:
Objective. The aim of this study was to assess the effect of cigarette smoke inhalation (CSI) on gene expression in alveolar bone healing sites. Study design. Wistar rats were randomly assigned to the groups: control [animals not exposed to CSI (n = 20)] and test [animals exposed to CSI, starting 3 days before teeth extraction and maintained until killing them (n = 20)]. First mandibular molars were bilaterally extracted, and the expression of alkaline phosphatase, bone morphogenetic protein (BMP) 2 and 7, receptor activator of nuclear factor kappa B ligand, osteoprotegerin, and d2 isoform of vacuolar adenosine triphosphatase V(o) domain were assessed by quantitative polymerase chain reaction in the newly formed tissue in the sockets. Results. Overall, data analysis demonstrated that CSI significantly affected the expression pattern of all of the studied genes except BMP-7. Conclusion. The expression of key genes for bone healing may be affected by CSI in tooth extraction sites. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:447-452)
Resumo:
Objective: To evaluate the repair of critical-size bone defects in rats treated with demineralized bovine bone (DBB) compared with autogenous bone (AB). Material and method: A bone defect of 8 mm in diameter was created in the calvaria of 50 Rattus norvegicus, treated either with DBB or AB. Sub-groups of five rats of each group were killed at 7, 14, 21, 30 and 90 days post-operatively, and the skulls were removed and processed histologically. Histological sections were stained with hematoxylin and eosin. Result: Histological analysis showed complete closure of the defects with new bone at 90 days in group AB, and substitution of the biomaterial by fibrotic connective tissue in the DBB group at 21 days. Morphometric analysis showed that DBB was rapidly absorbed at 14 days, with its volume density decreasing from 47%+/- 0.8% at 7 days to 1.2%+/- 0.41% at 14 days. Subsequently, volume densities of the connective tissue and neoformed bone increased from 51.1%+/- 11.17% to 86.8%+/- 7.92% and from 1.9%+/- 1.13% to 12%+/- 8.02%, respectively, for the same time interval. The volume density of AB particles did not change throughout the experimental periods, but the amount of new bone increased markedly between 7 and 90 days, from 4.5%+/- 1.57% to 53.5%+/- 6.42% (P < 0.05). Conclusion: DBB did not provide complete repair of the defects, with significantly less new bone formation than in the AB group.
Resumo:
Study Design. Osteoblastic cells derived from vertebral lamina and iliac crest were isolated and cultured under the same conditions (osteogenic medium, pH, temperature, and CO(2) levels). Objective. To compare proliferation and expression of osteoblastic phenotype of cells derived from vertebral lamina and iliac grafting. Summary of Background Data. Many factors play a role in the success of bone graft in spinal fusion including osteoblastic cell population. Two common sources of graft are vertebral lamina and iliac crest, however, differences in proliferation and osteoblastic phenotype expression between cells from these sites have not been investigated. Methods. Cells obtained from cancellous bone of both vertebral lamina and iliac crest were cultured and proliferation was evaluated by direct cell counting and viability detected by Trypan blue. Alkaline phosphatase (ALP) activity was evaluated by thymolphthalein release from thymolphthalein monophosphate and matrix mineralization by staining with alizarin red S. Gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, osteoprotegerin, and receptor activator of NF-kB ligand was analyzed by real-time PCR. All comparisons were donor-matched. Results. Proliferation was greater at days 7 and 10 in cells from vertebral lamina compared with ones from iliac crest without difference in cell viability. ALP activity was higher in cells from vertebral lamina compared with cells from iliac crest at days 7 and 10. At 21 days, mineralized matrix was higher in cells derived from vertebral lamina than from iliac crest. At day 7, gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, receptor activator of NF-kB ligand, and osteoprotegerin was higher in cells derived from vertebral lamina compared with iliac crest. Conclusion. Cell proliferation and osteoblastic phenotype development in cells derived from cancellous bone were more exuberant in cultures of vertebral lamina than of iliac crest.
Resumo:
Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.
Resumo:
Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [plate I et-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.
Resumo:
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.
Resumo:
Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.
Resumo:
Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g., bone and central nervous system) that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF), among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.
Resumo:
Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
Resumo:
Lymphatic vasculature is increasingly recognized as an important factor both in the regulation of normal tissue homeostasis and immune response and in many diseases, such as inflammation, cancer, obesity, and hypertension. In the last few years, in addition to the central role of vascular endothelial growth factor (VEGF)-C/VEGF receptor-3 signaling in lymphangiogenesis, significant new insights were obtained about Notch, transforming growth factor β/bone morphogenetic protein, Ras, mitogen-activated protein kinase, phosphatidylinositol 3 kinase, and Ca(2+)/calcineurin signaling pathways in the control of growth and remodeling of lymphatic vessels. An emerging picture of lymphangiogenic signaling is complex and in many ways distinct from the regulation of angiogenesis. This complexity provides new challenges, but also new opportunities for selective therapeutic targeting of lymphatic vasculature.
Resumo:
Several evidences suggest that astrocytes release small transmitter molecules, peptides, and protein factors via regulated exocytosis, implying that they function as specialized neurosecretory cells. However, very little is known about the molecular and functional properties of regulated secretion in astrocytes in the adult brain. Establishing these properties is central to the understanding of the communication mode(s) of these cells and their role(s) in the control of synaptic functions and of cerebral blood flow. In this study, we have set-up a high-resolution confocal microscopy approach to distinguish protein expression in astrocytic structures and neighboring synaptic terminals in adult brain tissue. This approach was applied to investigate the expression pattern of core SNARE proteins for vesicle fusion in the dentate gyrus and CA1 regions of the mouse hippocampus. Our comparative analysis shows that astrocytes abundantly express, in their cell body and main processes, all three protein partners necessary to form an operational SNARE complex but not in the same isoforms expressed in neighbouring synaptic terminals. Thus, SNAP25 and VAMP2 are absent from astrocytic processes and typically concentrated in terminals, while SNAP23 and VAMP3 have the opposite expression pattern. Syntaxin 1 is present in both synaptic terminals and astrocytes. These data support the view that astrocytes in the adult hippocampus can communicate via regulated exocytosis and also indicates that astrocytic exocytosis may differ in its properties from action potential-dependent exocytosis at neuronal synapses, as it relies on a distinctive set of SNARE proteins.