983 resultados para Molecular medicine
Resumo:
Dissertation toobtaina Master of Science degree in Bioorganics
Resumo:
The trypanosome evolution workshop, a joint meeting of the University of Exeter and the London School of Hygiene and Tropical Medicine, focused on topics relating to trypanosomatid and vector evolution. The meeting, sponsored by The Wellcome Trust, The Special Programme for Research and Training in Tropical Disease of World Health Organization and the British Section of the Society of Protozoologists, brought together an international group of experts who presented papers on a wide range of topics including parasite and vector phylogenies, molecular methodology and relevant biogeographical data.
Resumo:
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application.
Resumo:
Sudden cardiac death is one of the most prevalent cause of death in developed countries. Its aetiology varies according to the age. Some cardiac diseases may explain sudden death with minimal or no anatomic findings. However, many cardiac diseases, as for example channelopathies and hypertrophic cardiomyopathy have a genetic basis. Therefore genetic analyses (molecular autopsy) are becoming a useful tool in forensic medicine to identify the cause of sudden cardiac death and to improve the early diagnosis of asymptomatic carriers among relatives.
Resumo:
Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
Resumo:
The molecular diagnosis of retinal dystrophies (RD) is difficult because of genetic and clinical heterogeneity. Previously, the molecular screening of genes was done one by one, sometimes in a scheme based on the frequency of sequence variants and the number of exons/length of the candidate genes. Payment for these procedures was complicated and the sequential billing of several genes created endless paperwork. We therefore evaluated the costs of generating and sequencing a hybridization-based DNA library enriched for the 64 most frequently mutated genes in RD, called IROme, and compared them to the costs of amplifying and sequencing these genes by the Sanger method. The production cost generated by the high-throughput (HT) sequencing of IROme was established at CHF 2,875.75 per case. Sanger sequencing of the same exons cost CHF 69,399.02. Turnaround time of the analysis was 3 days for IROme. For Sanger sequencing, it could only be estimated, as we never sequenced all 64 genes in one single patient. Sale cost for IROme calculated on the basis of the sale cost of one exon by Sanger sequencing is CHF 8,445.88, which corresponds to the sale price of 40 exons. In conclusion, IROme is cheaper and faster than Sanger sequencing and therefore represents a sound approach for the diagnosis of RD, both scientifically and economically. As a drop in the costs of HT sequencing is anticipated, target resequencing might become the new gold standard in the molecular diagnosis of RD.
Resumo:
The DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) antagonizes the genotoxic effects of alkylating agents. MGMT promoter methylation is the key mechanism of MGMT gene silencing and predicts a favorable outcome in patients with glioblastoma who are exposed to alkylating agent chemotherapy. This biomarker is on the verge of entering clinical decision-making and is currently used to stratify or even select glioblastoma patients for clinical trials. In other subtypes of glioma, such as anaplastic gliomas, the relevance of MGMT promoter methylation might extend beyond the prediction of chemosensitivity, and could reflect a distinct molecular profile. Here, we review the most commonly used assays for evaluation of MGMT status, outline the prerequisites for standardized tests, and evaluate reasons for difficulties in reproducibility. We critically discuss the prognostic and predictive value of MGMT silencing, reviewing trials in which patients with different types of glioma were treated with various chemotherapy schedules, either up-front or at recurrence. Standardization of MGMT testing requires comparison of different technologies across laboratories and prospectively validated cut-off values for prognostic or predictive effects. Moreover, future clinical trials will need to determine, for each subtype of glioma, the degree to which MGMT promoter methylation is predictive or prognostic, and whether testing should become routine clinical practice.
Resumo:
Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy. The hypocretin/orexin deficiency is likely to be the key to its pathophysiology in most of cases although the cause of human narcolepsy remains elusive. Acting on a specific genetic background, an autoimmune process targeting hypocretin neurons in response to yet unknown environmental factors is the most probable hypothesis in most cases of human narcolepsy with cataplexy. Although narcolepsy presents one of the tightest associations with a specific human leukocyte antigen (HLA) (DQB1*0602), there is strong evidence that non-HLA genes also confer susceptibility. In addition to a point mutation in the prepro-hypocretin gene discovered in an atypical case, a few polymorphisms in monoaminergic and immune-related genes have been reported associated with narcolepsy. The treatment of narcolepsy has evolved significantly over the last few years. Available treatments include stimulants for hypersomnia with the quite recent widespread use of modafinil, antidepressants for cataplexy, and gamma-hydroxybutyrate for both symptoms. Recent pilot open trials with intravenous immunoglobulins appear an effective treatment of cataplexy if applied at early stages of narcolepsy. Finally, the discovery of hypocretin deficiency might open up new treatment perspectives.
Resumo:
BACKGROUND: In patients with acute venous thromboembolism and renal insufficiency, initial therapy with unfractionated heparin may have some advantages over low-molecular-weight heparin. METHODS: We used the Registro Informatizado de la Enfermedad TromboEmbólica (RIETE) Registry data to evaluate the 15-day outcome in 38,531 recruited patients. We used propensity score matching to compare patients treated with unfractionated heparin with those treated with low-molecular-weight heparin in 3 groups stratified by creatinine clearance levels at baseline: >60 mL/min, 30 to 60 mL/min, or <30 mL/min. RESULTS: Patients initially receiving unfractionated heparin therapy (n = 2167) more likely had underlying diseases than those receiving low-molecular-weight heparin (n = 34,665). Propensity score-matched groups of patients with creatinine clearance levels >60 mL/min (n = 1598 matched pairs), 30 to 60 mL/min (n = 277 matched pairs), and <30 mL/min (n = 210 matched pairs) showed an increased 15-day mortality for unfractionated heparin compared with low-molecular-weight heparin (4.5% vs 2.4% [P = .001], 5.4% vs 5.8% [P = not significant], and 15% vs 8.1% [P = .02], respectively), an increased rate of fatal pulmonary embolism (2.8% vs 1.2% [P = .001], 3.2% vs 2.5% [P = not significant], and 5.7% vs 2.4% [P = .02], respectively), and a similar rate of fatal bleeding (0.3% vs 0.3%, 0.7% vs 0.7%, and 0.5% vs 0.0%, respectively). Multivariate analysis confirmed that patients treated with unfractionated heparin were at increased risk for all-cause death (odds ratio, 1.8; 95% confidence interval, 1.3-2.4) and fatal pulmonary embolism (odds ratio, 2.3; 95% confidence interval, 1.5-3.6). CONCLUSIONS: In comparison with low-molecular-weight heparin, initial therapy with unfractionated heparin was associated with a higher mortality and higher rate of fatal pulmonary embolism in patients with creatinine clearance levels >60 mL/min or <30 mL/min, but not in those with levels between 30 and 60 mL/min.
Resumo:
Labile or mutation-sensitised proteins may spontaneously convert into aggregation-prone conformations that may be toxic and infectious. This hazardous behavior, which can be described as a form of "molecular criminality", can be actively counteracted in the cell by a network of molecular chaperone and proteases. Similar to law enforcement agents, molecular chaperones and proteases can specifically identify, apprehend, unfold and thus neutralize "criminal" protein conformers, allowing them to subsequently refold into harmless functional proteins. Irreversibly damaged polypeptides that have lost the ability to natively refold are preferentially degraded by highly controlled ATP-consuming proteases. Damaged proteins that escape proteasomal degradation can also be "incarcerated" into dense amyloids, "evicted" from the cell, or internally "exiled" to the lysosome to be hydrolysed and recycled. Thus, remarkable parallels exist between molecular and human forms of criminality, as well as in the cellular and social responses to various forms of crime. Yet, differences also exist: whereas programmed death is the preferred solution chosen by aged and aggregation-stressed cells, collective suicide is seldom chosen by lawless societies. Significantly, there is no cellular equivalent for the role of familial care and of education in general, which is so crucial to the proper shaping of functional persons in the society. Unlike in the cell, humanism introduces a bias against radical solutions such as capital punishment, favouring crime prevention, reeducation and social reinsertion of criminals.
Resumo:
Melanoma is an aggressive disease with few standard treatment options. The conventional classification system for this disease is based on histological growth patterns, with division into four subtypes: superficial spreading, lentigo maligna, nodular, and acral lentiginous. Major limitations of this classification system are absence of prognostic importance and little correlation with treatment outcomes. Recent preclinical and clinical findings support the notion that melanoma is not one malignant disorder but rather a family of distinct molecular diseases. Incorporation of genetic signatures into the conventional histopathological classification of melanoma has great implications for development of new and effective treatments. Genes of the mitogen-associated protein kinase (MAPK) pathway harbour alterations sometimes identified in people with melanoma. The mutation Val600Glu in the BRAF oncogene (designated BRAF(V600E)) has been associated with sensitivity in vitro and in vivo to agents that inhibit BRAF(V600E) or MEK (a kinase in the MAPK pathway). Melanomas arising from mucosal, acral, chronically sun-damaged surfaces sometimes have oncogenic mutations in KIT, against which several inhibitors have shown clinical efficacy. Some uveal melanomas have activating mutations in GNAQ and GNA11, rendering them potentially susceptible to MEK inhibition. These findings suggest that prospective genotyping of patients with melanoma should be used increasingly as we work to develop new and effective treatments for this disease.
Resumo:
The skin is privileged because several skin-derived stem cells (epithelial stem cells from epidermis and its appendages, mesenchymal stem cells from dermis and subcutis, melanocyte stem cells) can be efficiently captured for therapeutic use. Main indications remain the permanent coverage of extensive third degree burns and healing of chronic cutaneous wounds, but recent advances in gene therapy technology open the door to the treatment of disabling inherited skin diseases with genetically corrected keratinocyte stem cells. Therapeutic skin stem cells that were initially cultured in research or hospital laboratories must be produced according strict regulatory guidelines, which ensure patients and medical teams that the medicinal cell products are safe, of constant quality and manufactured according to state-of-the art technology. Nonetheless, it does not warrant clinical efficacy and permanent engraftment of autologous stem cells remains variable. There are many challenges ahead to improve efficacy among which to keep telomere-dependent senescence and telomere-independent senescence (clonal conversion) to a minimum in cell culture and to understand the cellular and molecular mechanisms implicated in engraftment. Finally, medicinal stem cells are expansive to produce and reimbursement of costs by health insurances is a major concern in many countries.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.