975 resultados para Modification in clays
Resumo:
Introdução: A organização estrutural e funcional do sistema nervoso face à organização dos diferentes tipos de input, no âmbito da intervenção em fisioterapia, pode potenciar um controlo postural para a regulação do stiffness e com repercussões na marcha e no levantar. Objetivo: Descrever o comportamento do stiffness da tibiotársica no movimento de dorsiflexão, no membro inferior ispi e contralesional, em indivíduos após Acidente Vascular Encefálico, face a uma intervenção em fisioterapia baseada num processo de raciocínio clínico. Pretendeu-se também observar as modificações ocorridas no âmbito da atividade electromiográfica dos flexores plantares, gastrocnémio medial e solear, durante a marcha e o levantar. Métodos: Foi implementado um programa de reabilitação em 4 indivíduos com sequelas de AVE por um período de 3 meses, tendo sido avaliados no momento inicial e final (M0 e M1). O torque e a amplitude articular da tibiotársica foi monitorizada, através do dinamómetro isocinético, durante o movimento passivo de dorsiflexão, e o nível de atividade eletromiográfica registado, através de electomiografia de superfície, no solear e gastrocnémio medial. Foram estudadas as fases de aceitação de carga no STS (fase II) e na marcha (sub-fase II). Resultados: Em todos os indivíduos em estudo verificou-se que o stiffness apresentou uma modificação no sentido da diminuição em todas as amplitudes em M1. O nível de atividade eletromiográfica teve comportamentos diferentes nos vários indivíduos. Conclusão: O stiffness apontou para uma diminuição nos indivíduos em estudo entre M0 e M1. Foram registadas modificações no nível de atividade eletromiográfica sem que seja possível identificar uma tendência clara entre os dois momentos para esta variável.
Resumo:
RESUMO A acção hipoglicemiante da insulina é máxima no estado pós-prandial e depende da substância hepática sensibilizadora da insulina (HISS). Esta dissertação visa o estudo do mecanismo de acção da insulina no estado pós-prandial e em particular da via dependente da HISS, em modelos animais fisiológicos e patológicos (obesidade e diabetes mellitus tipo 2). Avaliaram-se diferentes tipos de refeição quanto ao seu efeito potenciador da acção da insulina, em ratos Sprague-Dawley (modelo fisiológico). A administração intragástrica de glícidos não afecta a acção da insulina, mas a refeição mista (lípidos, glícidos e proteínas), promove a sensibilização para a acção da insulina, através de um processo que parece ser iniciado no intestino e envolve a activação da via da HISS. Nos estudos de obesidade, o primeiro modelo utilizado foi o rato alimentado com dieta hiperlipídica (HFD), no qual se observou uma insulinorresistência pós-prandial devida quase exclusivamente à perda de acção da HISS, que se correlaciona com a adiposidade (corporal e abdominal) e parece ser devida à diminuição da sua síntese. O segundo modelo de obesidade usado foi o rato Zucker obeso (OZR), modelo genético que apresenta uma diminuição idêntica de ambas as componentes de acção da insulina (dependente e independente da HISS). A alteração na via da HISS parece localizar-se a jusante da sua síntese, sugerindo que um ou vários pontos comuns entre as vias de sinalização intracelular da HISS e da insulina per se estão alterados, resultando num diminuto aporte de glucose. No OZR, a acção da HISS não se altera com a idade, apresentando-se baixa também às 52 semanas de idade. Em ratos não obesos (LZR), a acção da HISS diminui entre as 9 e 52 semanas, sendo acompanhada por um decréscimo menos acentuado, embora significativo, da acção da insulina per se. A diminuição da acção da HISS com a idade parece ser a principal causa de insulinorresistência pós-prandial em LZR velhos, não se agravando no OZR. No modelo de diabetes tipo 2 estudado, o rato Zucker diabético (ZDF), também ambas as componentes de acção da insulina estavam diminuídas. No entanto, a alimentação com ração Purina, ligeiramente mais energética e lipídica do que a ração standard, agrava a disfunção da via da HISS nestes animais, sugerindo que a sensibilidade à insulina em ratos ZDF é muito susceptível a factores nutricionais. A via da HISS é essencial para potenciar a acção da insulina do estado de jejum para o pós-prandial e a sua disfunção é em grande medida responsável pela insulinorresistência observada nos modelos animais de obesidade e diabetes estudados. xix SUMMARY Hypoglycemic insulin action is maximal in the postprandial state and depends on the hepatic insulin sensitizing substance (HISS). The present thesis focus on the postprandial insulin action and, in particular, on the HISS-dependent pathway, both in physiological and pathological (obesity and type 2 diabetes mellitus) animal models. Different meals were tested in Sprague-Dawley rats (physiological model) for their capacity to potentiate insulin action. It was observed that intragastric administration of either glucose or sucrose does not affect insulin sensitivity, unlike the mixed meal, composed of lipids carbohydrates and proteins, which significantly potentiated insulin action through a process that seems to be initiated at the intestine and involves activation of the HISS pathway. For the obesity studies, the first of the two obesity models used was the high fat-fed rat (HFD), in which the postprandial insulin resistance was almost exclusively caused by the decrease of HISS action, probably due to the impairment of HISS synthesis. This impairment correlates with both corporal and abdominal adiposity. The second obesity model used was the obese Zucker rat (OZR), a genetic model, which presented a similar impairment of both components of insulin action (HISSdependent and –independent). The modification in HISS pathway in OZR seems to be located downstream from HISS synthesis, that is, at its site of action – the skeletal muscle -, suggesting that one or several points common to both HISS and insulin per se signaling cascades are defective, resulting in a decreased glucose uptake. In OZR, HISS action does not decrease with age and is also low at 52 weeks of age. In non-obese rats (LZR), HISS action decreases from 9 to 52 weeks and it is accompanied by a lower, although significant, impairment of insulin action per se. HISS action impairment with aging seems to be the major cause of insulin resistance in old LZR, whereas insulin resistance is not aggravated in aging OZR. In the type 2 diabetes model, the diabetic Zucker rat (ZDF), both components of insulin action were also equally impaired. However, feeding the animals with Purina rat chow, which is slightly more caloric and more lipidic, induces additional HISS deterioration when compared with the standard lab diet, suggesting that insulin sensitivity in ZDF is very susceptible to nutritional factors. In conclusion, HISS pathway is essential to potentiate insulin action from the fasted to the fed state and its dysfunction is highly responsible for the insulin resistance observed in the obesity and diabetes animal models studied.
Resumo:
Introdução: A dificuldade na organização dos ajustes posturais antecipatórios (APAs) é frequentemente associada ao défice de controlo postural (CP) em crianças/jovens com um quadro motor de hemiplegia espástica, resultante de paralisia cerebral. As alterações biomecânicas da tibiotársica e do pé são características comummente observadas nestas crianças/jovens e influenciam o CP na sua globalidade. Objectivo(s): descrever o comportamento dos APAs associados ao início da marcha, face à modificação do alinhamento do pé em crianças/jovens com hemiplegia espástica, após 12 semanas de intervenção, segundo o Conceito Bobath-TND e aplicação de uma Ligadura Funcional (LF). Métodos: Foram avaliadas quatro crianças/jovens num momento inicial (M0) e após 12 semanas de intervenção e de aplicação de uma LF (M1). Recorrendo à eletromiografia de superfície, registaram-se os timings de activação dos músculos tibial anterior, solear, recto abdominal e erector da espinha (bilateralmente). O início do movimento foi calculado a partir da alteração do sinal obtido através da plataforma de pressões. Recorreu-se à aplicação da TMFM-88 para avaliar a função motora global e à aplicação da CIF-CJ para classificar a funcionalidade mediante as actividades e a participação. Procedeu-se ao registo de imagem para facilitar a observação/avaliação das componentes de movimento das crianças/jovens em estudo. Resultados: Após o período de intervenção, verificou-se uma modificação nos valores dos timings de ativação dos músculos em análise, que se aproximaram da janela temporal definida como APAs, bem como na distribuição de carga na base de suporte, nos scores da TMFM-88 e nos qualificadores das “Actividades e Participação”, sugestivos de uma melhor organização dos mecanismos de controlo postural. Conclusão: As crianças/jovens em estudo evidenciaram, após uma intervenção de fisioterapia baseada no Conceito Bobath- TND e aplicação de uma LF, uma evolução favorável tanto ao nível do CP da tibiotársica e do pé, apresentando timings de ativação muscular temporalmente mais ajustados à tarefa, com repercussões positivas nas actividades e participação.
Resumo:
The present work has its origin on the necessity of enabling a design certified company, or DOA (Design Organization Approval), to perform a modification; this modification is the installation of EO/IR (Electro-optical infrared) sensors on aircrafts. The subject of interest in this dissertation lies on the aerodynamic impact of the modification on the aircraft. The primary purpose of the present thesis is the creation of a methodology that regards the design stage of the modification. This methodology serves as guidance to the DOA design team that is assigned to the design of the modification. The methodology includes a recommendation to the certification of the modification; it contains a method intended to decide the location of the installation of the sensors on the aircraft; it also comprises of a design structure specifically adapted to the modification in study. Regarding the aerodynamic impact, it is studied the aerodynamic analysis’ tools, which allows one to relate the different stages of design to the most suited tools to each stage. A case study is performed with the purpose of not only validating the methodology which was created but also to giving a first approach to the preliminary design of the modification. As example, there are used the Lockheed Martin C-130 aircraft and the FLIR Star Safire III sensor.
Resumo:
RESUMO: Introdução - A utilização de células e das suas propriedades para o tratamento das doenças cardiovasculares, é uma promessa para o futuro e talvez a única forma de ultrapassar algumas das insuficiências das terapêuticas atuais. A via de entrega das células mais utilizada na investigação tem sido a intracoronária, ganhando a microcirculação especial relevância, por ser onde ocorre a primeira interação com o tecido nativo. As células estaminais mesenquimais (CEM) têm propriedades que as tornam particularmente aptas para a Terapia Celular, mas as suas dimensões, superiores ao diâmetro dos capilares, tem motivado controvérsia quanto à sua entrega intracoronária. A cardiologia de intervenção tem atualmente técnicas que permitem a avaliação em tempo real e in vivo do estado da microcirculação coronária. A determinação do índice da resistência da microcirculação (IRM) fornece informação sobre a circulação dos pequenos vasos, de forma independente da circulação coronária e do estado hemodinâmico, mas a aplicabilidade clínica deste conhecimento encontra-se ainda por definir. Objectivos Esclarecer o potencial do IRM no estudo dos efeitos do transplante de CEM por via intracoronária. População e Métodos . Estudo pré-clínico com modelo animal (suíno) desenvolvido em 3 fases. Na Primeira Fase foram utilizados 8 animais saudáveis para estudar e validar a técnica de determinação de estudo da microcirculação. Efetuou-se a determinação do IRM com duas doses diferentes de papaverina para a indução da resposta hiperémica máxima (5 e 10 mg) e após a disfunção da microcirculação com injeção intracoronária de microesferas de embozene com 40 μm de diâmetro. Na Segunda Fase foram utilizados 18 animais saudáveis, randomizados em grupo controlo e grupo recetor de 30 x 106 CEM por via intracoronária. Foram avaliados de forma cega o IRM, a pressão aórtica, o fluxo coronário epicárdico e a ocorrência de alterações electrocardiográficas. Na Terceira Fase foram utilizados 18 animais, com enfarte agudo do miocárdio provocado (EAM), randomizados em grupo controlo, grupo recetor de CEM expandidas de forma convencional e grupo recetor de CEM expandidas com metodologia inovadora e de menores dimensões. Foi realizada uma exploração da dose/efeito com infusão faseada de 10 x 106, 15 x 106 e 20 x 106 CEM, com determinação do IRM, da pressão aórtica, do fluxo coronário epicárdico e da ocorrência de alterações eletrocardiográficas. Quatro semanas após a entrega das células foi novamente avaliado o IRM e foi efetuado o estudo anatomopatológico dos animais na procura de evidência de neoangiogénese e de regeneração miocárdica, ou de um efeito positivo da resposta reparadora após o enfarte. Resultados Nas 3 fases todos os animais mantiveram estabilidade hemodinâmica e eletrocardiográfica, com exceção da elevação de ST de V1-V3 verificada após a injeção das microesferas. Na Primeira Fase as duas doses de papaverina induziram uma resposta hiperémica eficaz, sem tradução com significado na determinação do IRM (variação da pressão distal de - 11,4 ± 5 e de - 10,6± 5 mmHg com as doses de 5 e 10 mg respetivamente (p=0,5). Com a injeção das microesferas o IRM teve uma elevação média de 310 ± 190 %, para um valor médio de 41,3 ± 16 U (p = 0,001). Na Segunda Fase não houve diferenças significativas dos parâmetros hemodinâmicos, do fluxo epicárdico e da avaliação eletrocardiográfica entre os dois grupos. O IRM de base foi semelhante e após a infusão intracoronária observou-se uma elevação expressiva do IRM nos animais que receberam células em comparação com o grupo controlo (8,8 U ± 1 vs. 14,2 U ± 1,8, P=0,02) e quanto ao seu valor de base (aumento de 112%, p=0,008). Na terceira Fase não houve novamente diferenças significativas dos parâmetros hemodinâmicos, do fluxo epicárdico e da avaliação eletrocardiográfica entre os três grupos. Houve uma elevação do IRM nos animais que receberam células a partir da 2ª dose (72% nas células convencionai e 108% nas células inovadoras) e que se manteve com a 3ª dose (100% nas células convencionais e 88% nas inovadoras) com significado estatístico em comparação com o grupo controlo (p=0,034 com a 2ªdose e p=0,024 com a 3ª dose). Quatro semanas após a entrega das CEM observou-se a descida do IRM nos dois grupos que receberam células, para valores sobreponíveis aos do grupo controlo e aos valores pós-EAM. Na avaliação anatomopatológica e histológica dos corações explantados não houve diferenças entre os três grupos. Conclusões O IRM permite distinguir alterações da microcirculação coronária motivadas pela entrega intracoronária de CEM, na ausência de alterações de outros parâmetros clínicos da circulação coronária utilizados em tempo real. As alterações do IRM são progressivas e passíveis de avaliar o efeito/dose, embora não tenha sido possível determinar diferenças com os dois tipos de CEM. No nosso modelo a injeção intracoronária não se associou a evidência de efeito benéfico na reparação ou regeneração miocárdica após o EAM.---------------------------- ABSTRACT: ABSTRACT Introduction The use of cells for the treatment of cardiovascular disease is a promise for the future and perhaps the only option to overcome some of the shortcomings of current therapies. The strategy for the delivery of cells most often used in current research has been the intracoronary route and due to this microcirculation gains special relevance, mainly because it is the first interaction site of transplanted cells with the native tissue. Mesenchymal stem cells (MSC) have properties that make them suitable for Cell Therapy, but its dimensions, larger than the diameter of capillaries, have prompted controversy about the safety of intracoronary delivery. The interventional cardiology currently has techniques that allow for real-time and in vivo assessment of coronary microcirculation state. The determination of the index of microcirculatory resistance index (IMR) provides information about small vessels, independently of the coronary circulation and hemodynamic status, but the clinical applicability of this knowledge is yet to be defined. Objectives To clarify the potential use of IMR in the study of the effects of MSC through intracoronary transplantation. Population and Methods Preclinical study with swine model developed in three phases. In Phase One 8 healthy animals were used to study and validate the IMR assessment in our animal model. IMR was assessed with two different doses of papaverine for inducing the maximal hyperaemic response (5 and 10 mg) and microcirculation dysfunction was achieved after intracoronary injection with embozene microspheres with 40 μm in diameter. In Phase Two we randomized 18 healthy animals divided between the control group and the one receiving 30 x 106 MSC through an intracoronary infusion. There we blindly evaluated IMR, the aortic pressure, the epicardial coronary flow and the occurrence of ECG changes. In Phase Three we used 18 animals with a provoked acute myocardial infarction (AMI), randomized into a control group, a MSC expanded conventionally receiver group and a MSC expanded with an innovative methodology receiver group. There was a stepwise infusion with doses of 10 x 106, 15 x 106 and 20 x 106 MSC with determination of IMR, the aortic pressure, the epicardial coronary flow and occurrence of electrocardiographic abnormalities. Four weeks after cell delivery we again measured the IMR and proceeded with the pathological study of animals in the search for evidence of neoangiogenesis and myocardial regeneration, or a positive effect in the reparative response following the infarction. Results All animals remained hemodynamically stable and with no electrocardiographic abnormalities, except for the ST elevation in V1-V3 observed after injection of the microspheres. In Phase One the two doses of papaverine achieved an hyperemic and effective response without significant differences in IMR (variation of the distal pressure -11.4 ± 5 and -10.6 ± 5 mmHg with the doses of 5 and 10 mg respectively (p = 0.5). With the injection of the microspheres the IMR had an average increase of 310 ± 190% for an average value of 41.3 ± 16 U (p = 0.001). In the second phase there were no significant differences in hemodynamic parameters, epicardial flow and electrocardiographic assessment between the two groups. The baseline IMR was similar and after intracoronary infusion there was a significant increase in animals receiving cells compared with the control group (8.8 ± U 1 vs. 14.2 ± 1.8, p = 0.02) and with their baseline (112% increase, p = 0.008). In the third phase again there were no significant differences in hemodynamic parameters, the epicardial flow and electrocardiographic evaluation between the three groups. There was a significant increase in IMR in animals that received cells from the 2nd dose (72% in conventional cells and 108% in the innovative cells) that remained with the 3rd dose (100% in conventional cells and 88% in the innovative) with statistical significance compared with the control group (p = 0.034 with 2nd dose, p = 0.024 with 3rd dose). Four weeks after delivery of the MSC we observed the fall of the IMR in the two groups that received cells with values overlapping those of the control group. In pathological and histological evaluation of removed hearts there were no differences among the three groups. Conclusions The IMR allows for the differentiation of changes in coronary microcirculation motivated by intracoronary delivery of MSC in the absence of modification in other clinical parameters. IMR changes are progressive and enable the evaluation of the effect / dose, though it has not been possible to determine differences in the two types of MSC. In our model, intracoronary injection of MSC was not associated with evidence of repair or myocardial regeneration after AMI.
Resumo:
The conservation of diverse and well-distributed fish taxa, as the genus Leporinus, relies intrinsically on the knowledge of the ecological attributes of its representatives. Aiming to increase this knowledge, studies on diet and ecomorphology are ideal to provide important information about species ecology. Thus, this study aimed to analyze aspects of feeding ecology of L. reticulatus, from the upper Rio Juruena, Mato Grosso State, Brazil. The diet of specimens in different ontogenetic stages was compared, as well as their teeth morphology and ecomorphological attributes. Leporinus reticulatus presented omnivorous diet, with higher consumption of invertebrates by smaller specimens (younger ones), and gradual introduction of plant items in larger specimens (older ones). The items consumed by the individuals and the ecomorphological attributes indicated that the species is generalist and opportunistic, besides its association with the river bottom, evidencing a benthic feeding behavior. This species presents a gradual ontogenetic modification in teeth shape and mouth positioning, ranging from a terminal mouth with tricuspid teeth, in smaller specimens, to an inferior mouth with spatula shaped teeth with no cusps, in larger specimens.The ecomorphological attributes indicate an increasing swimming efficiency, and ability for performing vertical displacements, along the ontogenetic development, which in addition to the morphological ontogenetic alterations in the buccal apparatus, contributes to a better ability to explore another niches.
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
This paper deals with a modification in the solubilization technique of natural phophates in the 2% citric acid solution. The proposed technique is as follows: 2,5 g of phosphatic material and 250 ml of 2% citric acid solution, in a 500 ml Erlenmeyer flask, are shaken for 30 minutes at 30-40 rpm. The phosphorus (P2O5) was determined by the usual method. The data obtained were compared with the conventional technique in which a Stohmann bottle is used. The natural phosphates used were: Phosphorita de Olinda (Pernambuco), Flórida Phosphate (USA) and Hiperphosphate (África). Statistical analysis was applied to the data and the following conclusions were arrived at: a) The precision is equivalent in both techniques. b) There is no significant variation between the means obtained with the two technique.
Resumo:
ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.
Resumo:
The first agglutination experiments (Tables 1 and 2) showed that the serum obtained with any one strain of Leishmania, agglutinates all the others even of another species. This finding reveals the existence of a common antigen. However as the titre of agglutination did not permit a sharp differentiation of species we tried the adsorption method. The first adsorption tests made demonstrated differences in antigenic constitution between a strain of. L. donovani on one hand and strains of L. tropica or L. brasiliensis on the other. Further experiments in which L. chagasi was tested against the other species revealed that the former was antigenically different from the others. These tests were performed by adsorbing an anti-chagasi serum with organisms belonging to the other species or, conversely, adsorbing with L. chagasi sera prepared against the other species (See Tables 9 to 24). On the other hand, the adsorption of a serum prepared against one strain of l. chagasi by another of the same species showed that they had identifical antigenie constitution. These findings suggested the possibility of separating different species of Leishmania by this method. However, tests to separate the other species from one to another gave inconclusive results. (See Tables 27 to 35). It was soon observed that all the strains of L. chagasi were of recent isolation while all the others had been maintained in artificial culture media for a long time. We were led to believe that this condition was responsible for the differences in behaviour encountered. Accordingly, recently isolated strains of L. brasiliensis and L. donovani were tested and shown to be antigenically similar to strains of L. chagasi also recently isolated. The conclusion may be drawn that all strains have the same antigenic constitution when freshly isolated. It has been noted that when a serum which has been prepared against a freshly isolated is adsorbed with an old strain, the amount of agglutinins left free, is much smaller than when a serum prepared against an old strain is adsorbed with a newly isolated strain. At first, we thought to explain this by the low titre of the serum. However, the amount of agglutinins left free was not larger when higher titre serum was tested. The results do not corroborate the view of a special antigen being present in recently isolated strains (vi antige) but rather that the phenomenon is dependent on differences of the amount of the common antigen, more abundant in recent strains. In order to make this clear, experiments were made in which equal amounts of a serum prepared against a newly isolated strain were adsorbed by equal amounts, by weight, of, on one hand, a new strain, and the other an old strain. The resulting adsorbed sera were then titrated. (Table 44). Results showed that newly isolated strains adsorb a larger amount of agglutinins (Tables 44, 45). Two hypothesis have bem advanced to explain the stronger adsorbing qualities of the newly isolated strains. 1° - these strains possess larger amounts of the common antigen and 2° - they contain a vi antigen which adsorbed by the new strain together with the common antigen is the cause of their larger adsorbing capacity. To find out which of the two hypothesis corresponds to the reality a new experiment was made, similar to the one summarized in table 44. The adsorbed sera were made to act on a recently isolated strain as well as on an old one. The latter, not containing the vi antigen, the difference seen when sera act on new strains should not be observed here in the case of this antigen being responsible for the differences in adsorbing properties. The difference persisting, the indication would be that the greater adsorbing capacity of recently isolated strains was really related to larger amounts of the common antigen present (Tables 46 and 47). The results of the experiment excluded the possibility of the vi antigen being responsible. Other experiments, (Tables 48 to 53) using a 3 year old strain, demonstrated the modification in its antigenic constitution during the period it was maintained in cultures.
Resumo:
Introduction: Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. With no curative treatment available, current therapeutic approaches are aimed at symptom management. FXS is caused by silencing the FMR1 gene, which encodes FMRP; as loss of FMRP leads to the development of symptoms associated with FXS. Areas covered: In this evaluation, the authors examine the role of the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of FXS, and its suitability as a target for rescuing the disease state. Furthermore, the authors review the evidence from preclinical studies of pharmacological interventions targeting mGluR5 in FXS. Lastly, the authors assess the findings from clinical studies in FXS, in particular the use of the Aberrant Behavior Checklist-Community Edition (ABC-C) and the recently developed ABC-C for FXS scale, as clinical endpoints to assess disease modification in this patient population. Expert opinion: There is cautious optimism for the successful treatment of the core behavioral and cognitive symptoms of FXS based on preclinical data in animal models and early studies in humans. However, the association between mGluR5-heightened responsiveness and the clinical phenotype in humans remains to be demonstrated. Many questions regarding the optimal treatment and outcome measures of FXS remain unanswered.
Resumo:
El uso de indicadores es una herramienta muy útil cuando intervienen varios factores dentro de un mismo estudio o comparación. En el presente proyecto se ha propuesto una metodología para evaluar un programa específico de acciones para la mejora de la calidad del aire (ProAire) en la ciudad guanajuatense de León, México. Se trata de la propuesta de indicadores ambientales, de salud, económicos y sociales que puedan aplicar en acciones del ProAire para evaluar su puesta en marcha y cómo, mediante toda la información recopilada a lo largo de este estudio, se van a aplicar estos indicadores, que van a dar una idea sobre cómo se está desarrollando el ProAire y si éste requiere de alguna modificación para mejorar. Al aplicarse los indicadores, se realiza un balance de cuáles son las acciones más importantes ambientalmente y socialmente y se hace hincapié en la necesidad de prestarles mayor atención. También se describen varias propuestas de mejora y consejos a aplicar en el programa para que éste sea más eficiente y los actores implicados puedan desarrollar sus acciones con mayor rapidez. Mediante el presente estudio se puede comprobar cómo de importante es la sociedad y los recursos económicos dentro de la problemática medioambiental.
Resumo:
The effects of radiation on the reproductive capacity and the longevity of Panstrongylus magistus were studied. An indirect correlation between longevity and radiation doses was observed. Males were more affected than females. Longevity of females submitted to 10 Gy was not different when compared to controls. Some of the irradiated males copulated and in these cases semen was transferred to females, but only few eggs were laid. Fertility was seriously affected in all irradiated groups, decreasing with increasing intensity of dose. The dose of 80 Gy induced sterility in males and females. Gelatinous spermatophores that were expelled by females irradiated with 20 and 40 Gy, may be a consequence of irradiation that induced modification in the bursa copulatrix pH.
Resumo:
The changes in nutritional parameters and adipocytokines after structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection are analyzed. Twenty-seven patients with chronic HIV infection (median CD4+ T cell count/microl: nadir, 394; at the beginning of structured interruptions, 1041; HIV viral load: nadir, 41,521 copies/ml; at the beginning of structured interruptions <50 copies/ml; median time of previous treatment: 60 months) were evaluated during three cycles of intermittent interruptions of therapy (8 weeks on/4 weeks off). CD4+ T cell count, HIV viral load, anthropometric measures, and serum concentrations of triglycerides, cholesterol, leptin, and tumor necrosis factor and its soluble receptors I and II were determined. After the three cycles of intermittent interruptions of therapy, no significant differences in CD4+ T cell count/microl, viral load, or serum concentrations of cholesterol or triglycerides with reference to baseline values were found. A near-significant higher fatty mass (skinfold thicknesses, at the end, 121 mm, at the beginning, 100 mm, p = 0.100), combined with a significant increase of concentration of leptin (1.5 vs. 4.7 ng/ml, p = 0,044), as well as a decrease in serum concentrations of soluble receptors of tumor necrosis factor (TNFRI, 104 vs. 73 pg/ml, p = 0.022; TNFRII 253 vs. 195 pg/ml, p = 0.098) were detected. Structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection induces a valuable positive modification in markers of lipid turnover and adipose tissue mass.