892 resultados para Modeling and Simulation Challenges
Resumo:
Different aspects of hepatosplenic schistosomiasis are revisited here. Manson's schistosomiasis causes periportal fibrosis and portal hypertension in approximately 6% of infected subjects, usually with preservation of their hepatic function. The assessment of liver involvement is of major importance in determining the prognosis and risk of complications from schistosomiasis, such as upper digestive bleeding secondary to variceal rupture. For many years, the diagnosis of hepatosplenic schistosomiasis and liver fibrosis was made by abdominal palpation and the finding of liver and/or spleen enlargement. However, there is no consensus regarding the clinical parameters of the liver and spleen to be considered in this physical evaluation. For the last three decades, abdominal ultrasound (US) has become the best imaging technique to evaluate liver fibrosis caused by schistosomiasis mansoni. However, US is a subjective procedure and is therefore examiner-dependent. Magnetic resonance imaging (MRI) findings have provided valuable information in addition to ultrasound and clinical examination. The combination of a comprehensive history and physical examination, basic laboratory tests (a stool examination for Schistosoma mansoni eggs and a blood cell count), biomarkers for liver fibrosis/portal hypertension and imaging methods seem to offer the best approach for evaluating patients with this disease. In situations where research is involved or in patients with severe disease, MRI may be considered.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
Due to the increasing acceptance of BPM, nowadays BPM tools are extensively used in organizations. Core to BPM are the process modeling languages, of which BPMN is the one that has been receiving most attention these days. Once a business process is described using BPMN, one can use a process simulation approach in order to find its optimized form. In this context, the simulation of business processes, such as those defined in BPMN, appears as an obvious way of improving processes. This paper analyzes the business process modeling and simulation areas, identifying the elements that must be present in the BPMN language in order to allow processes described in BPMN to be simulated. During this analysis a set of existing BPM tools, which support BPMN, are compared regarding their limitations in terms of simulation support.
Resumo:
This work intends to present a newly developed test setup for dynamic out-of-plane loading using underWater Blast Wave Generators (WBWG) as loading source. Underwater blasting operations have been, during the last decades, subject of research and development of maritime blasting operations (including torpedo studies), aquarium tests for the measurement of blasting energy of industrial explosives and confined underwater blast wave generators. WBWG allow a wide range for the produced blast impulse and surface area distribution. It also avoids the generation of high velocity fragments and reduces atmospheric sound wave. A first objective of this work is to study the behavior of masonry infill walls subjected to blast loading. Three different masonry walls are to be studied, namely unreinforced masonry infill walls and two different reinforcement solutions. These solutions have been studied previously for seismic action mitigation. Subsequently, the walls will be simulated using an explicit finite element code for validation and parametric studies. Finally, a tool to help designers to make informed decisions on the use of infills under blast loading will be presented.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
There is an increasing interest in thin and flexible energy storage devices to meet modern society needs for applications such as, radio frequency sensing, interactive packaging and other consumer products. Printed batteries comply these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and micro-batteries are also included in the area of printed batteries whenever fabricated by printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this review. The state-of-art takes into account both the research and industrial levels. In the academic one, the research progress of printed batteries is summarized divided in lithium-ion battery (Li-ion), zinc-manganese dioxide (Zn-MnO2), and other battery types with emphasis on the different materials for anode, cathode and separator as well as in the battery design. With respect to the industrial state-of-art, materials, device formulations and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
In this work, we present a 3D web-based interactive tool for numerical modeling and simulation approach to breast reduction surgery simulation, to assist surgeons in planning all aspects related to breast reduction surgery before the actual procedure takes place, thereby avoiding unnecessary risks. In particular, it allows the modeling of the initial breast geometry, the definition of all aspects related to the surgery and the visualization of the post-surgery breast shape in a realistic environment.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014
Resumo:
It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew (Sorex araneus), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F- and R-statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F-statistics and from deviations from a single-step mutation model for R-statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.
Resumo:
The breakdown of the Bretton Woods system and the adoption of generalized oating exchange rates ushered in a new era of exchange rate volatility and uncer- tainty. This increased volatility lead economists to search for economic models able to describe observed exchange rate behavior. In the present paper we propose more general STAR transition functions which encompass both threshold nonlinearity and asymmetric e¤ects. Our framework allows for a gradual adjustment from one regime to another, and considers threshold e¤ects by encompassing other existing models, such as TAR models. We apply our methodology to three di¤erent exchange rate data-sets, one for developing countries, and o¢ cial nominal exchange rates, the sec- ond emerging market economies using black market exchange rates and the third for OECD economies.