891 resultados para Mn-doped BaTiO3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os resíduos gerados em domicílios incluem diversos produtos, como pesticidas, produtos farmacêuticos, detergentes, óleos de cozinha, metais pesados contidos em baterias e outros utensílios. Esses resíduos são lançados continuamente em aterro sanitário ou lixões em cidades como Manaus. O chorume produzido nesses aterros, quando não tratados, contamina recursos hídricos superficiais e subterrâneos. Neste estudo foi feita uma avaliação das conseqüências da liberação do chorume no sistema hídrico da bacia do Tarumã-Açu. Amostras de água e sedimento foram coletadas nos igarapés Matrinxã, Acará, Bolívia, bacia do Tarumã-Açu e dentro do aterro sanitário (Manaus - Amazonas - Brasil) em março 2001. As amostras de água foram filtradas em filtro Milipore (0,45 mm de poro) e, em seguida, tratadas com HNO3 concentrado. As amostras de sedimento foram peneiradas em malha de 0,053 mm e digeridas com HCl:HNO3 (1:3) a 150ºC. As concentrações de alguns metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn) foram determinadas nas amostras de água e sedimento por espectrometria de absorção atômica de chama. Os resultados revelaram que a concentração dos metais pesados é muito acima dos permitidos pela resolução 357/2005 do CONAMA em praticamente todos os locais amostrados, mostrando que o Aterro Sanitário é um dos principais responsáveis pelo impacto ambiental observado nos corpos hídricos estudados. As análises dos componentes principais (PCA) e hierárquica de cluster (HCA), revelam que os pontos de coleta localizados dentro do aterro sanitário apresentam características diferentes dos outros locais amostrados. Além disso, o HCA e PCA mostraram que existe uma similaridade entre os pontos de coleta localizados fora do aterro o que permite afirmar que o chorume do aterro se dissolve por todo corpo hídrico estudado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy harvesting efficiency of poly(vinylidene fluoride-trifluoroethylene) spin coated films and its nanocomposites with piezoelectric BaTiO3 have been investigated as a function of ceramic filler size and content. It is found that the best energy harvesting performance of ~0.28 W is obtained for the nanocomposite samples with 20% filler content of 10 nm size particles and for 5% filler content for the 100 and 500 nm size fillers. For the larger filler average sizes, the power decreases for filler contents above 5% due to increase of the mechanical stiffness of the samples. Due to the similar dielectric characteristics of the samples, the performance is mainly governed by the mechanical response. The obtained power values, easy processing and the low cost and robustness of the polymer, allow the implementation of the material for micro and nanogenerator applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sol-gel method was employed in the synthesis of di-urethane cross-linked poly( caprolactone) (PCL(530)/siloxane biohybrid ormolytes incorporating either a mixture of lithium triflate (LiCF3SO3) and the ionic liquid (IL) 1-ethyl-3-methyl imidazolium tetrafluoroborate ([Emim]BF4), or solely with [Emim]BF4 or LiCF3SO3. The ormolyte doped with [Emim]BF4 is thermally more stable and exhibits higher ionic conductivity (4 x 10-4 and 2 x 10-3 S cm-1 at 36 and 98 ºC, respectively) than those containing the LiCF3SO3/[Emim]BF4 mixture or just LiCF3SO3. The three ormolytes were employed in the production of glass/ITO/ormolyte/WO3/ITO/glass electrochromic devices (ECDs) designated as ECD@Y with Y = Li-[Emim]BF4, [Emim]BF4 and Li. The three ECDs displayed fast switching speed (ca. 30 s). ECD@Li-[Emim]BF4 exhibited an electrochromic contrast of 18.4 % and an optical density change of 0.11 in the visible region, the coloration efficiency attained at 555 nm was 159 and 80.2 cm-2 C-1 in the “on” and “off” states, respectively, and the open circuit memory was 48 hours. In the “on” state the CIE 1931 color space coordinates were x = 0.29 and y = 0.30, corresponding to blue color.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymer-based materials have been of particular interest as alternatives do synthetic polymers due to their low toxicity, biodegradability and biocompatibility. Among them, chitosan is one of the most studied ones and has recently been investigated for the application as solid state polymer electrolytes. Furthermore, it can serve as a host for luminescent species such as rare earth ions, giving rise to materials with increased functionality, of particular interest for electrochemical devices. In this study, we investigate chitosan based luminescent materials doped wit Eu3+ and Li+ triflate salts from the structural, photophysical and conductivity points of view. Because the host presents a broad emission band in the blue to green, while Eu3+ emits in the red, fine tuning of emission colour and/or generation of white light is possible by optimizing composition and excitation scheme. Europium lifetimes (5D0) are in the range 270 – 350 µs and quantum yields are as high as 2%. Although Li+ does not interfere with the luminescent properties, it grants ion-conducting properties to the material suggesting that a combination of both properties could be further explored in multifunctional device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin (SF) is a commonly available natural biopolymer produced in specialized glands of arthropods, with a long history of use in textile production and also in health cares. The exceptional intrinsic properties of these fibers, such as self-assembly, machinability, biocompatibility, biodegradation or non-toxicity, offer a wide range of exciting opportunities [1]. It has long been recognized that silk can be a rich source of inspiration for designing new materials with tailored properties, enhanced performance and high added value for targeted applications, opening exciting new prospects in the domain of materials science and related technological fields, including bio-friendly integration, miniaturization and multifunctionalization. In recent years it has been demonstrated that fibroin is an excellent material for active components in optics and photonics devices. Progress in new technological fields such as optics, photonics and electronics are emerging [2,3]. The incorporation of polymer electrolytes as components of various devices (advanced batteries, smart windows, displays and supercapacitors) offers significant advantages with respect to traditional electrolytes, including enhanced reliability and improved safety. SF films are particularly attractive in this context. They have near-perfect transparency across the VIS range, surface flatness (together with outstanding mechanical robustness), ability to replicate patterned substrates and their thickness may be easily tailored from a few nanometers to hundreds of micrometers through spin-casting of a silk solution into subtract. Moreover, fibroin can be added to other biocomponents or salts in order to modify the biomaterial properties leading to optimized and total different functions. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating SF films doped with lithium triflate and lithium tetrafluoroborate (LiTFSI and LiBF4, respectively) as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging. Aiming to evaluate the performance of the ion conducting SF membranes doped with LiTFSI and LiBF4 (SF-Li), small ECDs with glass/ITO/WO3/SF-Li/CeO2-TiO2/ITO/glass configuration were assembled and characterized. The device exhibited, after 4500 cycles, the insertion of charge at -3.0 V reached –1.1 mC.cm-2 in 15 s. After 4500 cycles the window glass-staining, glass/ITO/WO3/Fibrin-Li salts electrolyte/CeO2-TiO2/ITO/glass configuration was reversible and featured a T  8 % at λ = 686 nm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Quanto às características morfológicas, as domácias nas folhas tratadas não apresentaram diferenças apreciáveis, a não ser quanto à forma do orifício de entrada ou bôca, que ora é circular, ora é eliptico. Foram assinalados pelos nas adjacências da domácia. 2. Sob o ponto de vista anatômico, anotei na estrutura pequenas alterações na epiderme que reveste o interior da câmara e canal, constando de diferenças quanto ao tamanho, uniformidade, grau de cutinização e aspectos diversos nas- paredes externas das células. O tecido envolvente apresentou variações no número de camadas e na forma irregular de suas células.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo foi feito com a finalidade de verificar a influência do Mn sobre as concentrações de P, Ca, Mg, Mn, Zn e Cu das partes aéreas e Ca, Fe e Mn das raízes, bem como detectar possíveis relações entre as concentrações dos elementos determinados em ambos os órgãos com o grau de tolerância ao Mn dos cultivares. Concluiu-se que o grau de tolerância ao Mn não está relacionado com as concentrações de P, Ca, Mg, Fe, Mn, Zn e Cu das partes aéreas e Ca, Fe e Mn das raízes e que as concentrações dos elementos determinados em ambos os órgãos se comportam diferentemente em função das concentrações de Mn na solução.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plantas de arroz, variedades IAC-25 e IAC-47 foram cultivadas em solução nutritiva completa e com excesso de Al, Cl e Mn (25, 1750 e 25 ppm, respectivamente). As últimas não completaram o ciclo. Foram observados sintomas típicos de toxidez. A produção de matéria seca foi mais afetada pelos tratamentos na variedade IAC-47. Ambas as variedades mostraram-se mais sensíveis a toxidez de Mn que à de Al. Foram determinados os teores foliares de Al, Cl e Mn associados à toxidez correspondente.