979 resultados para Mixed Media
Resumo:
Visual content is a critical component of everyday social media, on platforms explicitly framed around the visual (Instagram and Vine), on those offering a mix of text and images in myriad forms (Facebook, Twitter, and Tumblr), and in apps and profiles where visual presentation and provision of information are important considerations. However, despite being so prominent in forms such as selfies, looping media, infographics, memes, online videos, and more, sociocultural research into the visual as a central component of online communication has lagged behind the analysis of popular, predominantly text-driven social media. This paper underlines the increasing importance of visual elements to digital, social, and mobile media within everyday life, addressing the significant research gap in methods for tracking, analysing, and understanding visual social media as both image-based and intertextual content. In this paper, we build on our previous methodological considerations of Instagram in isolation to examine further questions, challenges, and benefits of studying visual social media more broadly, including methodological and ethical considerations. Our discussion is intended as a rallying cry and provocation for further research into visual (and textual and mixed) social media content, practices, and cultures, mindful of both the specificities of each form, but also, and importantly, the ongoing dialogues and interrelations between them as communication forms.
Resumo:
This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.
Resumo:
The reaction between ascorbic acid and ammonium hexa nitrato cerate was studied potentiometrically in the mixed solvent glacial acetic acid acetonitrile medium. It was found that one mole of ascorbic acid consumes four equivalents of cerate in non-aqueous medium. This reaction can be made use of to estimate potentiometrically ascorbic acid with ammonium nitrato cerate in non-aqueous media, using either glass or antimony as reference electrode and platinum as indicator electrode.
Resumo:
The proton-decoupled 13C NMR spectra of mixtures of liquid crystals with opposite diamagnetic anisotropies have been studied in the natural abundance of 13C. A new method to assign the spectral lines to specific carbons in the liquid crystalline phase has been developed. For this purpose, the assignments of lines in the isotropic media are required, and they were obtained from two-dimensional hetero-COSY experiments. From the spectra in the �critical� mixtures where both the orientations of the liquid crystal directors, with the alignments along and perpendicular to the direction of the magnetic field, �coexist,� the 13C chemical-shift anisotropies have been determined, assuming uniaxial symmetry.
Resumo:
Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.
Resumo:
Planar imidazolium cation based gemini surfactants 16-Im-n-Im-16], 2Br(-) (where n = 2, 3, 4, 5, 6, 8, 10, and 12), exhibit different morphologies and internal packing arrangements by adopting different supramolecular assemblies in aqueous media depending on their number of spacer methylene units (CH2)(n). Detailed measurements of the small-angle neutron-scattering (SANS) cross sections from different imidazolium-based surfactant micelles in aqueous media (D2O) are reported. The SANS data, containing the information of aggregation behavior of such surfactants in the molecular level, have been analyzed on the basis of the Hayter and Penfold model for the macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric surfactant micelles. The characteristic changes in the SANS spectra of the dimeric surfactant with n = 4 due to variation of temperature have also been investigated. These data are then compared with the SANS characterization data of the corresponding gemini micelles containing tetrahedral ammonium ion based polar headgroups. The critical micellar concentration of each surfactant micelle (cmc) has been determined using pyrene as an extrinsic fluorescence probe. The variation of cmc as a function of spacer chain length has been explained in terms of conformational variation and progressive looping of the spacer into the micellar interior upon increasing the n values. Small-angle neutron-scattering (SANS) cross sections from different mixed micelles composed of surfactants with ammonium headgroups, 16-A(0), 16-Am-n-Am-16], 2Br(-) (where n = 4), 16-I-0, and 16-Im-n-Im-16], 2Br(-) (where n = 4), in aqueous media (D2O) have also been analyzed. The aggregate composition matches with that predicted from the ideal mixing model.
Resumo:
10 p.
Resumo:
The culture of the of green alga Chlorella ellipsoidea was conducted under natural conditions at the same place simultaneously in five different media, viz., medium-I (inorganic medium), medium-II (powdered whole-pulse medium), medium-III (medium of pulse bran), medium-IV (mixed medium = 50% inorganic medium + 50% whole-pulse powder medium), medium-V (mixed medium = 50% inorganic medium + 50% pulse bran medium). The culture was done in 500 ml conical flask. Growth rates of C. ellipsoidea in five different media were different and reached maximum cell densities of 0.63 x 10^6 cells per ml in 8 days in medium-I, 4.02 x 10^6 cells per ml in 10 days in medium-II, 3.62 x 10^6 cells per ml in 9 days in medium-III, 4.38 x 10^6 cells per ml in 11 days in medium-IV and 4.36 x 10^6 cells per ml in 11 days in medium-V. The range of air temperature was 20 to 33°C and that of culture media was 24 to 32°C and light intensity was 2000 to 7000 lux during the culture period. The inexpensive culture media were found to be significantly useful for algal culture.
Resumo:
The electrochemistry of Prussian blue mixed in a polymer medium containing MClO4 (M = Li+, Na+, K+, TBA(+)) as the supporting electrolyte was studied by means of solid-state voltammetry. This approach is new in Prussian blue studies. The behavior of PB in polymer electrolytes is somewhat similar to the well-known behavior for an electrochemically synthesized PB film in aqueous media. Besides, K+, Li+ and Na+ ions can also transport through the crystal of PB because of its zeolitic nature. The transport of TBA(+) ions is possible. Kinetic control lies in the diffusion of cations in and out of the lattice of Prussian blue. Reduction waves of Prussian blue depend on both the size and type of cations. PB is very stable upon electrochemical cycling in polymer electrolytes and air. This system may be used in rechargeable batteries and electrochromic devices.
Resumo:
The palladium-catalyzed hydrogenolysis of aromatic ketones to alkylbenzenes was studied in mixtures of ionic liquids to explore the promotional effect of these reaction media. Choline-based ionic liquids displayed complete miscibility with the aromatic ketone substrate at reaction temperature and a clear phase separation of the derived alkylbenzene product at room temperature. Selected ionic liquids were then assessed as reaction media in the hydrogenolysis of aromatic ketones over palladium catalysts. A binary mixture of choline and betainium bis(trifluoromethylsulfonyl)imide ionic liquids resulted in the highest conversion and selectivity values in the hydrogenolysis of acetophenone. At the end of the reaction, the immiscible alkylbenzene separates from the ionic liquid mixture and the pure product phase can be isolated by simple decantation. After optimization of the reaction conditions, high yields (>90%) of alkylbenzene were obtained in all cases. The catalyst and the ionic liquid could be used at least three times without any loss of activity or selectivity.
Resumo:
Aim This study aimed to develop and evaluate a multi-media educational resource in palliative and end-of-life care for specialist palliative care and intellectual disability services which promoted collaborative working. Methods: A mixed methods design involving three phases was used. Qualitative data were obtained from semi-structured interviews with a purposive sample of professionals (n=30) and family carers (n=5) and from two focus groups with people with intellectual disabilities (n=17). Data were content analysed as outlined y Newell and Burnard (2006). This identified training needs and issues, in end-of-life care for this population which were confirmed through quantitative data from services in a regional scoping study analysed using descriptive statistics. A DVD and manual were developed and evaluated with twelve professionals. Data were collected using a solicited diary, the Readiness for Inter-professional Learning Scale, Likert Scales and an evaluation questionnaire. Thematic analysis and descriptive statistics appropriate to data were used.Results: Findings suggest that this resource demonstrates the need for and benefits of partnership working and transferability of this learning to practice could address issues at end-of-life for people with intellectual disabilities. Conclusions: Findings of this study have importance for partnership working and service provision in end-of-life care for this population.
Resumo:
We propose a mixed cost-function adaptive initialization algorithm for the time domain equalizer in a discrete multitone (DMT)-based asymmetric digital subscriber line. Using our approach, a higher convergence rate than that of the commonly used least-mean square algorithm is obtained, whilst attaining bit rates close to the optimum maximum shortening SNR and the upper bound SNR. Furthermore, our proposed method outperforms the minimum mean-squared error design for a range of time domain equalizer (TEQ) filter lengths. The improved performance outweighs the small increase in computational complexity required. A block variant of our proposed algorithm is also presented to overcome the increased latency imposed on the feedback path of the adaptive system.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.
Resumo:
Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations.