971 resultados para Microwave furnace


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part A

A problem restricting the development of the CuCl laser has been the decrease in output power with increases of tube temperature above 400°C. At that temperature the CuCl vapor pressure is about .1 torr. This is a small fraction of the buffer gas pressure (He at 10 torr).

The aim of the project was to measure the peak radiation temperature (assumed related to the mean energy of electrons) in the laser discharge as a function of the tube temperature. A 24 gHz gated microwave radiometer was used.

It was found that at the tube temperatures at which the output power began to deteriorate, the electron radiation temperature showed a sharp increase (compared with radiation temperature in pure buffer).

Using the above result, we have postulated that this sudden increase is a result of Penning ionization of the Cu atoms. As a consequence of this process the number of Cu atoms available for lasing decrease.

PART B

The aim of the project was to study the dissociation of CO2 in the glow discharge of flowing CO2 lasers.

A TM011 microwave (3 gHz) cavity was used to measure the radially averaged electron density ne and the electron-neutral collision frequency in the laser discharge. An estimate of the electric field is made from these two measurements. A gas chromatograph was used to measure the chemical composition of the gases after going through the discharge. This instrument was checked against a mass spectrometer for accuracy and sensitivity.

Several typical laser mixtures were .used: CO2-N2-He (1,3,16), (1,3,0), (1,0,16), (1,2,10), (1,2,0), (1,0,10), (2,3,15), (2,3,0), (2,0,15), (1,3,16)+ H2O and pure CO2. Results show that for the conditions studied the dissociation as a function of the electron density is uniquely determined by the STP partial flow rate of CO2, regardless of the amount of N2 and/or He present. The presence of water vapor in the discharge decreased the degree of dissociation.

A simple theoretical model was developed using thermodynamic equilibrium. The electrons were replaced in the calculations by a distributed heat source.

The results are analyzed with a simple kinetic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave scattering properties of an axially magnetized afterglow plasma column in an S-band waveguide have been investigated experimentally. The column axis is perpendicular to the electric field and the direction of wave propagation in the H_(10)-mode waveguide. Strong absorption is found in the range of upper hybrid frequencies, ω_c ≤ ω ≤ [ω^2_c + ω^2_p(r,t)]^(1/2) where ω_c is the electron cyclotron frequency and ω_p is the locally and temporally varying electron plasma frequency. With the high absorption the noise emission approaches the blackbody limit. A microwave radiometer has been used to measure the noise power and with a comparison and null-technique the electron temperature. As emission and absorption are largely confined to a resonant layer, spatially resolved temperature data are obtained. Time resolution is obtained by gating the radiometer. The peak electron density is derived from the emission or absorption onset at the maximum upper hybrid frequency and confirmed by independent measurements. With this diagnostic technique the electron density and temperature decay has been studied under a variety of experimental conditions. Ambipolar diffusion and collisional cooling essentially account for the plasma decay, but impurities and metastable ions play an important role. The diagnostic method is successfully applied in a microwave heating experiment. The existence of absorbing resonant layers is shown by a peak in the radial temperature profile where the local upper hybrid frequency equals the heating frequency. The knowledge of the plasma parameters is important in the study of hot plasma effects. Buchsbaum-Hasegawa modes are investigated in a wide range of magnetic fields (.5 < ω_c/ω < .985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is the first time in China that the phase variations and phase shift of microwave cavity in a miniature Rb fountain frequency standard are studied, considering the effect of imperfect metallic walls. Wall losses in the microwave cavity lead to small traveling wave components that deliver power from the cavity feed to the walls of cavity. The small traveling wave components produce a microradian distribution of phase throughout the cavity ity, and therefore distributed cavity phase shifts need to be considered. The microwave cavity is a TE011 circular cylinder copper cavity, with round cut-hole of end plates (14mm in diameter) for access for the atomic flux and two small apertures in the center of the side wall for coupling in microwave power. After attenuation alpha is calculated, field variations in cavity are solved. The field variations of the cavity are given. At the same time, the influences of loaded quality factor QL and diameter/height (2a/d) of the microwave cavity on the phase variations and phase shift are considered. According to the phase variation and phase shift of microwave cavity we select the parameters of cavity, diameter 2a = 69.2mm, height d = 34.6mm, QL = 5000, which will result in an uncertainty delta(Delta f / f0 ) < 4.7 x 10(-17) and meets the requirement for the miniature Rb fountain frequency standard with accuracy 10(-15).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have theoretically investigated the phase shift of a probe field for a four-level atomic system interacting successively with two fields tuned near an EIT resonance of an atom, a microwave field, and a coupling field. It has been found that the phase of retrieved signal has been shifted due to the cross-phase modulation when the stored spin wave was disturbed by a microwave. Because of the low relaxation rates of the ground hyperfine state, our proposed technique can impart a large phase rotation onto the probe field with low absorption of retrieved field and very low intensity of the microwave field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the absorptive spectral lines of four-level atomic system driven by a coupling, probe and microwave fields. Due to the perturbation of the microwave field, the original electromagnetically induced transparency is changed to electromagnetically induced absorption and the absorptive spectral line can be very narrow. This ultranarrow spectral line has potential applications to the microwave atomic frequency standard and the measurement of very weak magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precision polarimetry of the cosmic microwave background (CMB) has become a mainstay of observational cosmology. The ΛCDM model predicts a polarization of the CMB at the level of a few μK, with a characteristic E-mode pattern. On small angular scales, a B-mode pattern arises from the gravitational lensing of E-mode power by the large scale structure of the universe. Inflationary gravitational waves (IGW) may be a source of B-mode power on large angular scales, and their relative contribution to primordial fluctuations is parameterized by a tensor-to-scalar ratio r. BICEP2 and Keck Array are a pair of CMB polarimeters at the South Pole designed and built for optimal sensitivity to the primordial B-mode peak around multipole l ~ 100. The BICEP2/Keck Array program intends to achieve a sensitivity to r ≥ 0.02. Auxiliary science goals include the study of gravitational lensing of E-mode into B-mode signal at medium angular scales and a high precision survey of Galactic polarization. These goals require low noise and tight control of systematics. We describe the design and calibration of the instrument. We also describe the analysis of the first three years of science data. BICEP2 observes a significant B-mode signal at 150 GHz in excess of the level predicted by the lensed-ΛCDM model, and Keck Array confirms the excess signal at > 5σ. We combine the maps from the two experiments to produce 150 GHz Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg2 for an equivalent survey weight of 248000 μK2. We also show preliminary Keck Array 95 GHz maps. A joint analysis with the Planck collaboration reveals that much of BICEP2/Keck Array's observed 150 GHz signal at low l is more likely a Galactic dust foreground than a measurement of r. Marginalizing over dust and r, lensing B-modes are detected at 7.0σ significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave response of the superconducting state in equilibrium and non-equilibrium configurations was examined experimentally and analytically. Thin film superconductors were mostly studied in order to explore spatial effects. The response parameter measured was the surface impedance.

For small microwave intensity the surface impedance at 10 GHz was measured for a variety of samples (mostly Sn) over a wide range of sample thickness and temperature. A detailed analysis based on the BCS theory was developed for calculating the surface impedance for general thickness and other experimental parameters. Experiment and theory agreed with each other to within the experimental accuracy. Thus it was established that the samples, thin films as well as bulk, were well characterised at low microwave powers (near equilibrium).

Thin films were perturbed by a small dc supercurrent and the effect on the superconducting order parameter and the quasiparticle response determined by measuring changes in the surface resistance (still at low microwave intensity and independent of it) due to the induced current. The use of fully superconducting resonators enabled the measurement of very small changes in the surface resistance (< 10-9 Ω/sq.). These experiments yield information regarding the dynamics of the order parameter and quasiparticle systems. For all the films studied the results could be described at temperatures near Tc by the thermodynamic depression of the order parameter due to the static current leading to a quadratic increase of the surface resistance with current.

For the thinnest films the low temperature results were surprising in that the surface resistance decreased with increasing current. An explanation is proposed according to which this decrease occurs due to an additional high frequency quasiparticle current caused by the combined presence of both static and high frequency fields. For frequencies larger than the inverse of the quasiparticle relaxation time this additional current is out of phase (by π) with the microwave electric field and is observed as a decrease of surface resistance. Calculations agree quantitatively with experimental results. This is the first observation and explanation of this non-equilibrium quasiparticle effect.

For thicker films of Sn, the low temperature surface resistance was found to increase with applied static current. It is proposed that due to the spatial non-uniformity of the induced current distribution across the thicker films, the above purely temporal analysis of the local quasiparticle response needs to be generalised to include space and time non-equilibrium effects.

The nonlinear interaction of microwaves arid superconducting films was also examined in a third set of experiments. The surface impedance of thin films was measured as a function of the incident microwave magnetic field. The experiments exploit the ability to measure the absorbed microwave power and applied microwave magnetic field absolutely. It was found that the applied surface microwave field could not be raised above a certain threshold level at which the absorption increased abruptly. This critical field level represents a dynamic critical field and was found to be associated with the penetration of the app1ied field into the film at values well below the thermodynamic critical field for the configuration of a field applied to one side of the film. The penetration occurs despite the thermal stability of the film which was unequivocally demonstrated by experiment. A new mechanism for such penetration via the formation of a vortex-antivortex pair is proposed. The experimental results for the thinnest films agreed with the calculated values of this pair generation field. The observations of increased transmission at the critical field level and suppression of the process by a metallic ground plane further support the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the in-plane bias magnetic field acting on a flat circular magnetic dot is smaller than the saturation field, there are two stable competing magnetization configurations of the dot: the vortex and the quasi-uniform (C-state). We measured microwave absorption properties in an array of non-interacting permalloy dots in the frequency range 1-8 GHz when the in-plane bias magnetic field was varied in the region of the dot magnetization state bi-stability. We found that the microwave absorption properties in the vortex and quasi-uniform stable states are substantially different, so that switching between these states in a fixed bias field can be used for the development of reconfigurable microwave magnetic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe3O4 and ZnxFe3-xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, microwave dielectric properties of A-site substitution by La3+ in (Pb0.45Ca0.55) (Fe0.5Nb0.5) 03 system were investigated. Microwave dielectric properties of A-site charge unbalance substitution of [(Pb0.45Ca0.55)(1-x) La-x] (Fe0.5Nb0.5)O-3(+) (P45CLFN) were improved because the solid solution of small amount of surplus La3+ with (Pb, Ca)(2+) could eliminate oxygen vacancies, and the formation of secondary phase (pyrochlore) was also caused by surplus La3+. The decreasing of dielectric constant with the increase of La3+ content is due to the formation of pyrochlore. The grain size is changed slightly and Q(f) values (7000 similar to 7300 GHz) are almost unchanged at x = 0.02 similar to 0.10, but the temperature coefficient of resonant frequency (TCF) are increased and changed from negative to positive. TCF is zero at x 0.075 with Q(f) = 7267 GHz and K = 89. TCF of all specimens are within +/- 5 x 10(-6)degrees C-1.