959 resultados para Microwave Mammography
Resumo:
Cold cathodes based on carbon nanotubes allow to produce a modulated electron beam. Using an array of vertically aligned CNs that exhibit an aspect ratio of about 200, we demonstrated the modulation of a high current density beam (∼ 1 A/cm2) at 1.5 and 32 GHz frequencies. Such CN cathodes are very promising for their use in a new generation of compact, highly efficient and low cost amplifiers that operate between 10 and 100 GHz. © 2007 IEEE.
Resumo:
We demonstrate a record 150km transmission of microwave signals by a directly-modulated radio-over-fiber link with a bit-error-rate of less than 10-12. Cascaded semiconductor optical amplifiers are employed in this link to extend the transmission link length. © 2005 Optical Society of America.
Resumo:
Seasonal snow cover in the mountains of the Upper Colorado River Basin is a major source of water for a large portion of the southwestern United States. The extent and amount of this snowpack not only reflects changes in weather patterns and climate but also influences the general circulation through modification of the energy exchange between land and atmosphere. ... Satellite observations and remote sensing techniques can enhance the standard snowpack observations to provide the temporal and spatial measurements required for understanding the role of snow in the surface energy balance and improving the management of water resources.
Resumo:
Temperature profile of fish chikuwa was taken during microwave cooking at 100 power level for different durations and subjected to organoleptic evaluation. Moisture content and organoleptic quality of fish chikuwa paste mixed with different levels of moisture and cooked at 100 power levels for 6 minutes were analysed. Microwave cooked fish chikuwa with standardized recipe was heated in microwave oven with hot air at different temperature for different durations. Fish chikuwa microwave cooked at 100 power level for 6 minutes had higher scores for all attributes as compared to those cooked for different durations and also fulfill the condition of pasteurisation of fish chikuwa. Fish chikuwa prepared with 35% moisture had better scores for all attributes unlike those of other levels. Heating of microwave pasteurised fish chikuwa at different temperatures for different durations could not achieve the desired brown colour.
Resumo:
There has been a growing interest in hydrogenated silicon carbide films (SiC:H) prepared using the electron cyclotron resonance-chemical vapour deposition (ECR-CVD) technique. Using the ECR-CVD technique, SiC:H films have been prepared from a mixture of methane, silane and hydrogen, with phosphine as the doping gas. The effects of changes in the microwave power (from 150 to 900 W) on the film properties were investigated in a series of phosphorus-doped SiC:H films. In particular, the changes in the deposition rate, optical bandgap, activation energy and conductivity were investigated in conjunction with results from Raman scattering and Fourier transform infra-red (FTIR) analysis. It was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the amorphous matrix of the SiC:H films. This occurs in correspondence to a rapid increase in the conductivity and a reduction in the activation energy, both of which exhibit small variations in samples deposited at microwave powers exceeding 500 W. Analysis of IR absorption results suggests that hydrogen is bonded to silicon in the Si-H stretching mode and to carbon in the sp3 CHn rocking/wagging and bending mode in films deposited at higher microwave powers.
Resumo:
Carbon nanotubes (CNTs) have good mechanical properties and unique structural, electronic, thermal, and optical characteristics. In this work, we present the results of our investigations of a resonator device based on embedded vertical CNT arrays. The device's design is based on the mechanical resonance of the tubes. CoventorWare FEA tools have been used to simulate the mechanical resonance frequencies of the vertical nanotubes arrays integrated on a silicon substrate. ©2008 IEEE.
Resumo:
We have studied two different kinds of electron tubes using a cold field emission cathode as the electron source. This cathode is an array of vertically aligned multiwall carbon nanotubes. The first device is a triode. With this device, we demonstrated the modulation at 32 GHZ of a 1.4 A/cm2 peak current density with a 82% modulation ratio. The second device is a traveling wave tube. For this device, the objective is to test a cathode delivering a 2 A/cm 2 electron beam. ©2009 IEEE.