939 resultados para Mg-al
Resumo:
This review aims to provide a foundation for the safe and effective use of magnesium (Mg) alloys, including practical guidelines for the service use of Mg alloys in the atmosphere and/or in contact with aqueous solutions. This is to provide support for the rapidly increasing use of Mg in industrial applications, particularly in the automobile industry. These guidelines should be firmly based on a critical analysis of our knowledge of SCC based on (1) service experience, (2) laboratory testing and (3) understanding of the mechanism of SCC, as well as based on an understanding of the Mg corrosion mechanism.
Resumo:
The formation of MgA1 layered double hydroxide (LDH) from physically mixed MgO and Al2O3 oxides upon hydrothermal treatment has been extensively investigated, and a formation mechanism has been proposed. We observed that the formation of LDH from the oxide mixture occurs upon heating at 110 degreesC. In general, LDH is the major component while the minor phases are mainly determined by the initial pH of the oxide suspension as well as the MgO/Al2O3 ratio. The neutrality in the initial suspension results in a minor Mg(OH)(2) as the impure phase, while the alkalinity in the suspension keeps some MgO unreacted throughout the whole hydrothermal treatment. We suggest that MgO and Al2O3 be hydrated into Mg(OH)(2) and Al(OH)(3), respectively, in the initial stage for all samples. We further Suggest that in the neutral condition Mg(OH)2 be quickly dissociated to Mg2+ and OH- which then deposit on the surface of Al(OH)(3)/Al2O3 to form a M-Al pre-LDH material. Al(OH)(4)(-), ionized from Al(OH)(3) in the basic solution, deposits on the surface of Mg(OH)(2)/MgO to result in a similar MgAl pre-LDH material. Such a pre-LDH material is then well crystallized upon continuous heating via the diffusion of metal ions in the solid lattice. Such a dissociation-deposition-diffusion mechanism via two pathways has been supported by the phase composition, morphological features of crystallites, and [Mg]/[Al] ratios on the crystallite surface. and presumably applied to the general formation of LDHs with various synthetic methods. Such as coprecipitation, homogeneous preparation, and reconstruction.
Resumo:
The thickness, chemical composition and microstructure of anodised coatings formed on magnesium alloy AZ91D at various anodising current densities were measured. It was found that all these parameters could be affected by anodising current density, and hence the coatings formed at different anodising current densities had different corrosion resistances. This suggests that the corrosion performance of an anodised coating could be improved if a properly designed current waveform is used for anodising. In addition, based on the experimental results, some physical, chemical and electrochemical reactions involved in the anodising process were proposed to explain the anodising behaviour in this paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the relationship between mechanical properties and microstructure in high pressure die cast binary Mg-Al alloys. As-cast test bars produced using high pressure die casting have been tested in tension in order to determine the properties for castings produced using this technique. It has been shown that increasing aluminium levels results in increases in yield strength and a decrease in ductility for these alloys. Higher aluminium levels also result in a decrease in creep rate at 150 degrees C. It has also been shown that an increase in aluminium levels results in an increase in the volume fraction of eutectic Mg17Al12 in the microstructure.
Resumo:
This paper reviews various aspects of anodizing of magnesium alloys, such as the basics, processes, properties and applications. It systematically summarises the existing fundamental studies and technical developments of anodizing of magnesium alloys, and concludes that new anodizing processes based on electrolytic plasma anodizing that convert the surface of a magnesium alloy into a hard ceramic coating in an electrolytic bath using high energy electric discharges can offer improved wear and corrosion resistance. These new anodized coatings are often claimed to perform better than the traditional ones obtained through older anodizing processes, such as DOW17 or HAE. The new anodizing techniques are chromate free and hence environment friendly. It is expected that more cost-effective, environment-friendly and non-toxic anodizing techniques will be developed and applied to magnesium alloy components in the future.
Resumo:
The corrosion performance of anodised magnesium and its alloys, such as commercial purity magnesium (CP-Mg) and high-purity magnesium (HP-Mg) ingots, magnesium alloy ingots of MEZ, ZE41, AM60 and AZ91D and diecast AM60 (AM60-DC) and AZ91D (AZ91D-DC) plates, was evaluated by salt spray and salt immersion testing. The corrosion resistance was in the sequential order: AZ91D approximate to AM60 approximate to MEZ >= AZ91D-DC >= AM60-DC > HP-Mg > ZE41 > CP-Mg. It was concluded the corrosion resistance of an anodised magnesium alloy was determined by the corrosion performance of the substrate alloy due to the porous coating formed on the substrate alloy acting as a simple corrosion barrier. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
To investigate the neurotoxic effects of aluminium (Al) Al was administered: 1) in the diet of the rat (30 mg Al/kg body weight for 6 weeks); 2) as a suspension of aluminium acetate in drinking water of the rat for 3 months and 3) in a long-term study in the mouse in which aluminosilicates were incorporated into a pelleted diet (1035 mg/kg of food over 23 months). In the latter treatment, increased Al was combined with a reduction in calcium and magnesium; a treatment designed to increase absorption of Al into the body. Administration of Al in the drinking water significantly reduced total brain biopterins and BH4 synthesis. However, no significant affect of Al in the diet on total biopterins or BH4 synthesis was found either in the rat or in the long-term study in the mouse. In addition, in the mouse no significant effects of the Al diet on levels of noradrenaline, serotonin, dopamine, 5-HIAA or CAT could be demonstrated. Hence, the occurrence of brain alterations may depend on the Al species present and the method of administration. Al salts in drinking water may increase brain tissue levels compared with the administration of a more insoluble species. Since alterations in biopterin metabolism are also a feature of Alzheimer's disease (AD) these results support the hypothesis that Al in the water supply may be a factor in AD.
Resumo:
Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.
Resumo:
Biodiesel is a promising non-toxic and biodegradable renewable fuel, synthesized by the homogeneous base-catalyzed transesterification of vegetable oils or animal fats with methanol or ethanol. Removal of the base, typically Na or K alkoxide, after reaction is a major problem since aqueous quenching results in stable emulsions and saponification. The use of a solid base catalyst offers several process advantages including the elimination of a quenching step (and associated basic water waste) to isolate the products, and the opportunity to operate in a continuous process. The synthesis and characterization of a series of Li-doped CaO and Mg-Al hydrotalcite solid base catalysts were presented and their physicochemical properties were correlated with their activity in biodiesel synthesis. Both catalysts were effective solid bases for the transesterification of triglycerides to the methyl ester, with catalyst activity related to the electronic properties of Li and Mg dopants. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).
Resumo:
Templated, macroporous Mg-Al hydrotalcites synthesised via alkali-free co-precipitation exhibit superior performance in the transesterification of C4 -C18 triglycerides for biodiesel production, with rate-enhancement increasing with alkyl chain length. Promotion reflects improved diffusion of bulky triglycerides and accessibility of active sites within the hierarchical macropore-micropore architecture. © 2012 The Royal Society of Chemistry.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is a non-toxic and biodegradable fuel, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum. However, current manufacturing routes employing soluble catalysts are very energy inefficient, with their removal necessitating an energy intensive separation to purify biodiesel, which in turn produces copious amounts of contaminated aqueous waste. The introduction of non-food based feedstocks and technical advances in heterogeneous catalyst and reactor design are required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. Here we report on the development of tuneable solid acid and bases for biodiesel synthesis, which offer several process advantages by eliminating the quenching step and allowing operation in a continuous reactor. Significant progress has been made towards developing tuneable solid base catalysts for biodiesel synthesis, including Li/CaO [1], Mg-Al hydrotalcites [2] and calcined dolomite [3] which exhibit excellent activity for triglyceride transesterification. However, the effects of solid base strength on catalytic activity in biodiesel synthesis remains poorly understood, hampering material optimisation and commercial exploitation. To improve our understanding of factors influencing solid base catalysts for biodiesel synthesis, we have applied a simple spectroscopic method for the quantitative determination of surface basicity which is independent of adsorption probes. Such measurements reveal how the morphology and basicity of MgO nanocrystals correlate with their biodiesel synthesis activity [4]. While diverse solid acids and bases have been investigated for TAG transesterification, the micro and mesoporous nature of catalyst systems investigated to date are not optimal for the diffusion of bulky and viscous C16-C18 TAGs typical of plant oils. The final part of this presentation will address the benefits of designing porous networks comprising interconnected hierarchical macroporous and mesoporous channels (Figure 1) to enhance mass-transport properties of viscous plant oils during biodiesel synthesis [5]. References: [1] R.S. Watkins, A.F. Lee, K. Wilson, Green Chem., 2004, 6, 335. [2]D.G. Cantrell, L.J. Gillie, A.F. Lee and K. Wilson, Appl. Catal. A, 2005, 287,183. [3] C. Hardacre, A.F. Lee, J.M. Montero, L. Shellard, K.Wilson, Green Chem., 2008, 10, 654. [4] J.M. Montero, P.L. Gai, K. Wilson, A.F. Lee, Green Chem., 2009, 11, 265. [5] J. Dhainaut, J.-P. Dacquin, A.F. Lee, K. Wilson, Green Chem., 2010, 12, 296.
Resumo:
Nanoparticulate gold has emerged as a promising catalyst for diverse mild and efficient selective aerobic oxidations. However, the mechanism of such atom-economical transformations, and synergy with functional supports, remains poorly understood. Alkali-free Mg-Al hydrotalcites are excellent solid base catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA), but only in concert with high concentrations of metallic gold nanoparticles. In the absence of soluble base, competitive adsorption between strongly-bound HMF and reactively-formed oxidation intermediates site-blocks gold. Aqueous NaOH dramatically promotes solution phase HMF activation, liberating free gold sites able to activate the alcohol function within the metastable 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) reactive intermediate. Synergistic effects between moderate strength base sites within alkali-free hydrotalcites and high gold surface concentrations can afford highly selective and entirely heterogeneous catalysts for aqueous phase aldehyde and alcohol cascade oxidations pertinent to biomass transformation.
Resumo:
The Buchans ore bodies of central Newfoundland represent some of the highest grade VMS deposits ever mined. These Kuroko-type deposits are also known for the well developed and preserved nature of the mechanically transported deposits. The deposits are hosted in Cambro-Ordovician, dominantly calc-alkaline, bimodal volcanic and epiclastic sequences of the Notre Dame Subzone, Newfoundland Appalachians. Stratigraphic relationships in this zone are complicated by extensively developed, brittledominated Silurian thrust faulting. Hydrothermal alteration of host rocks is a common feature of nearly all VMS deposits, and the recognition of these zones has been a key exploration tool. Alteration of host rocks has long been described to be spatially associated with the Buchans ore bodies, most notably with the larger in-situ deposits. This report represents a base-line study in which a complete documentation of the geochemical variance, in terms of both primary (igneous) and alteration effects, is presented from altered volcanic rocks in the vicinity of the Lucky Strike deposit (LSZ), the largest in-situ deposit in the Buchans camp. Packages of altered rocks also occur away from the immediate mining areas and constitute new targets for exploration. These zones, identified mostly by recent and previous drilling, represent untested targets and include the Powerhouse (PHZ), Woodmans Brook (WBZ) and Airport (APZ) alteration zones, as well as the Middle Branch alteration zone (MBZ), which represents a more distal alteration facies related to Buchans ore-formation. Data from each of these zones were compared to those from the LSZ in order to evaluate their relative propectivity. Derived litho geochemical data served two functions: (i) to define primary (igneous) trends and (ii) secondary alteration trends. Primary trends were established using immobile, or conservative, elements (i. e., HFSE, REE, Th, Ti0₂, Al₂0₃, P₂0₅). From these, altered volcanic rocks were interpreted in terms of composition (e.g., basalt - rhyodacite) and magmatic affinity (e.g., calc-alkaline vs. tholeiitic). The information suggests that bimodality is a common feature of all zones, with most rocks plotting as either basalt/andesite or dacite (or rhyodacite); andesitic senso stricto compositions are rare. Magmatic affinities are more varied and complex, but indicate that all units are arc volcanic sequences. Rocks from the LSZ/MBZ represent a transitional to calc-alkalic sequence, however, a slight shift in key geochemical discriminants occurs between the foot-wall to the hanging-wall. Specifically, mafic and felsic lavas of the foot-wall are of transitional (or mildly calc-alkaline) affinity whereas the hanging-wall rocks are relatively more strongly calc-alkaline as indicated by enriched LREE/HREE and higher ZrN, NbN and other ratios in the latter. The geochemical variations also serve as a means to separate the units (at least the felsic rocks) into hanging-wall and foot-wall sequences, therefore providing a valuable exploration tool. Volcanic rocks from the WBZ/PHZ (and probably the APZ) are more typical of tholeiitic to transitional suites, yielding flatter mantlenormalized REE patterns and lower ZrN ratios. Thus, the relationships between the immediate mining area (represented by LSZ/MBZ) and the Buchans East (PHZ/WBZ) and the APZ are uncertain. Host rocks for all zones consist of mafic to felsic volcanic rocks, though the proportion of pyroclastic and epiclastic rocks, is greatest at the LSZ. Phenocryst assemblages and textures are common in all zones, with minor exceptions, and are not useful for discrimination purposes. Felsic rocks from all zones are dominated by sericiteclay+/- silica alteration, whereas mafic rocks are dominated by chlorite- quartz- sericite alteration. Pyrite is ubiquitous in all moderately altered rocks and minor associated base metal sulphides occur locally. The exception is at Lucky Strike, where stockwork quartzveining contains abundant base-metal mineralization and barite. Rocks completely comprised of chlorite (chloritite) also occur in the LSZ foot-wall. In addition, K-feldspar alteration occurs in felsic volcanic rocks at the MBZ associated with Zn-Pb-Ba and, notably, without chlorite. This zone represents a peripheral, but proximal, zone of alteration induced by lower temperature hydrothermal fluids, presumably with little influence from seawater. Alteration geochemistry was interpreted from raw data as well as from mass balanced (recalculated) data derived from immobile element pairs. The data from the LSZ/MBZ indicate a range in the degree of alteration from only minor to severe modification of precursor compositions. Ba tends to show a strong positive correlation with K₂0, although most Ba occurs as barite. With respect to mass changes, Al₂0₃, Ti0₂ and P₂0₅ were shown to be immobile. Nearly all rocks display mass loss of Na₂O, CaO, and Sr reflecting feldspar destruction. These trends are usually mirrored by K₂0-Rb and MgO addition, indicating sericitic and chloritic alteration, respectively. More substantial gains ofK₂0 often occur in rocks with K-feldspar alteration, whereas a few samples also displayed excessive MgO enrichment and represent chloritites. Fe₂0₃ indicates both chlorite and sulphide formation. Si0₂ addition is almost always the case for the altered mafic rocks as silica often infills amygdules and replaces the finer tuffaceous material. The felsic rocks display more variability in Si0₂. Silicic, sericitic and chloritic alteration trends were observed from the other zones, but not K-feldspar, chloritite, or barite. Microprobe analysis of chlorites, sericites and carbonates indicate: (i) sericites from all zones are defined as muscovite and are not phengitic; (ii) at the LSZ, chlorites ranged from Fe-Mg chlorites (pycnochlorite) to Mg-rich chlorite (penninite), with the latter occurring in the stockwork zone and more proximal alteration facies; (iii) chlorites from the WBZ were typical of those from the more distal alteration facies of the LSZ, plotting as ripidolite to pycnochlorite; (iv) conversely, chlorite from the PHZ plot with Mg-Al-rich compositions (chlinochlore to penninite); and (v) carbonate species from each zone are also varied, with calcite occurring in each zone, in addition to dolomite and ankerite in the PHZ and WBZ, respectively. Lead isotope ratios for galena separates from the different various zones, when combined with data from older studies, tend to cluster into four distinctive fields. Overall, the data plot on a broad mixing line and indicate evolution in a relatively low-μ environment. Data from sulphide stringers in altered MBZ rocks, as well as from clastic sulphides (Sandfill prospect), plot in the Buchans ore field, as do the data for galena from altered rocks in the APZ. Samples from the Buchans East area are even more primitive than the Buchans ores, with lead from the PHZ plotting with the Connel Option prospect and data from the WBZ matching that of the Skidder prospect. A sample from a newly discovered debris flow-type sulphide occurrence (Middle Branch East) yields lead isotope ratios that are slightly more radiogenic than Buchans and plot with the Mary March alteration zone. Data within each cluster are interpreted to represent derivation from individual hydrothermal systems in which metals were derived from a common source.
Resumo:
We present results of an inorganic geochemical pore water and sediment study conducted on Quaternary sediments from the western Arctic Ocean. The sediment cores were recovered in 2008 from the southern Mendeleev Ridge during RV Polarstern Expedition ARK-XXIII/3. With respect to sediment sources and depositional processes, peaks in Ca/Al, Mg/Al, Sr/Al and Sr/Mg indicate enhanced input of both ice-rafted (mainly dolomite) and biogenic carbonate during deglacial warming phases. Distinct and repetitive brown layers enriched in Mn (oxyhydr)oxides occur mostly in association with these carbonate-rich intervals. For the first time, we show that the brown layers are also consistently enriched in scavenged trace metals Co, Cu, Mo and Ni. The bioturbation patterns of the brown layers, specifically well-defined brown burrows into the underlying sediments, support formation close to the sediment-water interface. The Mn and trace metal enrichments were probably initiated under warmer climate conditions. Both river runoff and melting sea ice delivered trace metals to the Arctic Ocean, but also enhanced seasonal productivity and organic matter export to the sea floor. As Mn (oxyhydr)oxides and scavenged trace metals were deposited at the sea floor, a co-occurring organic matter "pulse" triggered intense diagenetic Mn cycling at the sediment-water interface. These processes resulted in the formation of Mn and trace metal enrichments, but almost complete organic matter degradation. As warmer conditions ceased, reduced riverine runoff and/or a solid sea ice cover terminated the input of riverine trace metal and fresh organic matter, and greyish-yellowish sediments poor in Mn and trace metals were deposited. Oxygen depletion of Arctic bottom waters as potential cause for the lack of Mn enrichments during glacial intervals is highly improbable. While the original composition and texture of the brown layers resulted from specific climatic conditions (including transient Mn redox cycling at the sediment-water interface), pore water data show that early diagenetic Mn redistribution is still affecting the organic-poor sediments in several meters depth. Given persistent steady state diagenetic conditions, purely authigenic Mn-rich brown layers may form, while others may completely vanish. The degree of diagenetic Mn redistribution largely depends on the depositional environment within the Arctic Ocean, the availability of Mn and organic matter, and seems to be recorded by the Co/Mo ratios of single Mn-rich layers. We conclude that brown Arctic sediment layers are not necessarily synchronous features, and correlating them across different parts of the Arctic Ocean without additional age control is not recommended.
Resumo:
During Ocean Drilling Program Leg 210, a greatly expanded sedimentary sequence of continuous Cretaceous black shales was recovered at Site 1276. This section corresponds to the Hatteras Formation, which has been documented widely in the North Atlantic Ocean. The cored sequence extends from the lowermost Albian, or possibly uppermost Aptian, to the Cenomanian/Turonian boundary and is characterized by numerous gravity-flow deposits and sporadic, finely laminated black shales. The sequence also includes several sedimentary intervals with high total organic carbon (TOC) contents, in several instances of probable marine origin that may record oceanic anoxic events (OAE). These layers might correspond to the Cenomanian-Turonian OAE 2; the mid-Cenomanian event; and OAE 1b, 1c, and 1d in the Albian. In addition, another interval with geochemical characteristics similar to OAE-type layers was recognized in the Albian, although it does not correspond to any of the known OAEs. This study investigates the origin of the organic matter contained within these black shale intervals using TOC and CaCO3 contents, Corg/Ntot ratios, organic carbon and nitrogen isotopes, trace metal composition, and rock-eval analyses. Most of these black shale intervals, especially OAE 2 and 1b, are characterized by low 15N values (<0) commonly observed in mid-Cretaceous black shales, which seem to reflect the presence of an altered nitrogen cycle with rates of nitrogen fixation significantly higher than in the modern ocean.