960 resultados para Methylene blue
Resumo:
Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.
Resumo:
Introduction: The application of light as a stimulus in pharmaceutical systems and the associated ability to provide precise spatiotemporal control over location, wavelength and intensity, allowing ease of external control independent of environmental conditionals, has led to its increased use. Of particular note is the use of light with photosensitisers.
Areas covered: Photosensitisers are widely used in photodynamic therapy to cause a cidal effect towards cells on irradiation due to the generation of reactive oxygen species. These cidal effects have also been used to treat infectious diseases. The effects and benefits of photosensitisers in the treatment of such conditions are still being developed and further realised, with the design of novel delivery strategies. This review provides an overview of the realisation of the pharmaceutically relevant uses of photosensitisers, both in the context of current research and in terms of current clinical application, and looks to the future direction of research.
Expert opinion: Substantial advances have been and are being made in the use of photosensitisers. Of particular note are their antimicrobial applications, due to absence of resistance that is so frequently associated with conventional treatments. Their potency of action and the ability to immobilise to polymeric supports is opening a wide range of possibilities with great potential for use in healthcare infection prevention strategies.
Resumo:
The overall aim of the project was to study the influence of process variables on the distribution of a model active pharmaceutical ingredient (API) during fluidised melt granulation of pharmaceutical granules with a view of optimising product characteristics. Granules were produced using common pharmaceutical excipients; lactose monohydrate using poly ethylene glycol (PEG1500) as a meltable binder. Methylene blue was used as a model API. Empirical models relating the process variables to the granules properties such as granule mean size, product homogeneity and granule strength were developed using the design of experiment approach. Fluidising air velocity and fluidising air temperature were shown to strongly influence the product properties. Optimisation studies showed that strong granules with homogeneous distribution of the active ingredient can be produced at high fluidising air velocity and at high fluidising air temperatures.
Resumo:
This article reports the development of a novel drum photocatalytic reactor for treating dye effluent streams. The parameters for operation including drum rotation speed, light source distance, catalyst loading and H2O2 doping have been investigated using methylene blue as a model pollutant. Effluent can be generated by a number of domestic and industrial sources, including pharmaceutical, oil and gas, agricultural, food and chemical sectors. The work reported here proposes the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from effluents sources, initial studies have proved effective in removing residual hydrocarbons from the effluent.
Resumo:
The current eight published ISO standards associated with semiconductor photocatalysis are considered. These standards cover: (1) air purification (specifically, the removal of NO, acetaldehyde and toluene), (2) water purification (the photobleaching of methylene blue and oxidation of DMSO) (3) self-cleaning surfaces (the removal of oleic acid and subsequent change in water droplet contact angle), (4) photosterilisation (specifically probing the antibacterial action of semiconductor photocatalyst films) and (5) UV light sources for semiconductor photocatalytic ISO work. For each standard, the background is first considered, followed by a brief discussion of the standard particulars and concluding in a discussion of the pros and cons of the standard, with often recommendations for their improvement. Other possible standards for the future which would either compliment or enhance the current ones are discussed briefly.
Resumo:
A novel photocatalytic reactor has been developed to remediate oily wastewaters. In the first instance degradation rates of model organic compounds, methylene blue (MB) and 4-c hlorophenol (4-CP) were determined. The experimental set-up investigated a 1:10 w/v catalyst to organic solution volume, 30 g catalyst, 300 mls MB (10 μM) or 4-CP (100 μM). The catalyst investigated was a pellet catalyst to improve separation of the remediated volume from the catalyst following treatment. MB concentration decreased by 93% after 15 mins irradiation whilst 4-CP concentration decreased by 94% following 90 mins irradiation. Oily waste water (OWW) from an interceptor tank typically containing diesel oils was obtained from Sureclean, an environmental clean-up company. The OWW was treated using the same conditions as MB and 4-CP, the model organic compounds. Levels of total organic carbon (TOC) and total petroleum hydrocarbon (TPH) were used to monitor the efficacy of the photocatalytic reactor. TOC reduced by 45% following two 90 mins treatment cycles. TPH reduced by 45% following 90 mins irradiation and by a further 25% during a second stage of treatment. This reactor can be used as a polishing technique assembled within a wastewater treatment plant. Allowing for more than one pass through the reactor improves its efficiency.
Resumo:
The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics.
Resumo:
Farming of salmon has become a significant industry in many countries over the past two decades. A major challenge facing this sector is infestation of the salmon by sea lice. The main way of treating salmon for such infestations is the use of medicines such as organophosphates, pyrethrins, hydrogen peroxide or benzoylphenyl ureas. The use of these medicines in fish farms is, however, highly regulated due to concerns about contamination of the wider marine environment. In this paper we report the use of photochemically active biocides for the treatment of a marine copepod, which is a model of parasitic sea lice. Photochemical activation and subsequent photodegradation of PDAs may represent a controllable and environmentally benign option for control of these parasites or other pest organisms in aquaculture.
Resumo:
Visible-light-activated yellow amorphous TiO2 (yam- TiO 2) was synthesised by a simple and organic-free precipitation method. TiN, an alternative precursor for TiO2 preparation, was dissolved in hydrogen peroxide under acidic condition (pH∼1) adjusted by nitric acid. The yellow precipitate was obtained after adjusting pH of the resultant red brown solution to 2 with NH4OH. The BET surface area of this sample was 261 m2/g. The visible light photoactivity was evaluated on the basis of the photobleaching of methylene blue (MB) in an aqueous solution by using a 250 W metal halide bulb equipped with UV cutoff filter (λ>420 nm) under aerobic conditions. Yam- TiO2 exhibits an interesting property of being both surface adsorbent and photoactive under visible light. It was assigned to the η2-peroxide, an active intermediate form of the addition of H2O2 into crystallined TiO2 photocatalyst. It can be concluded that an active intermediate form of titanium peroxo species in photocatalytic process can be synthesised and used as a visible-light-driven photocatalyst
Resumo:
Photocatalytic antibacterial low density polyethylene (LDPE)–TiO2 films are produced by an extrusion method and tested for photocatalytic oxidation activity, via the degradation of methylene blue (MB) and photocatalytic antibacterial activity, via the destruction of Escherichia coli. The MB test showed that extruded LDPE films with a TiO2 loading 30 wt.% were of optimum activity with no obvious decrease in film strength, although the activity was less than that exhibited by the commercial self-cleaning glass, Activ®. UVC pre-treatment (9.4 mW cm−2) of the latter film improved its activity, with the level of surface sites available for MB adsorption increasing linearly with UVC dose. Although the MB test revealed an optimum exposure time of ca. 60 min photocatalytic oxidation activity, only 30 min was used in the photocatalytic antibacterial tests in order to combine minimal reduction in film integrity with maximum film photocatalytic activity. The photocatalytic antibacterial activity of the latter film was over 10 times that of a non-UVC treated 30 wt.% TiO2 film, which, in turn was over 100 times more active than Activ®.
Resumo:
Novel, reversible (reusable) photocatalyst activity indicator labels, which undergo a rapid colour change when in contact with a photocatalytic film via the photoreduction of methylene blue contained within the label’s adhesive, are explored as a method for assessing the activity of self-cleaning glass in situ and the laboratory, using digital photography.
Resumo:
A family outbreak of methaemoglobinaemia following ingestion of sausages made using 'saltpetre' is reported. Saltpetre is a generic term for several potassium and sodium based compounds. On this occasion imprecise ordering led to the use of sodium nitrite rather than the usual potassium nitrate, with extremely serious consequences.
Resumo:
A importância médica do sangue associada ao risco de doenças infeciosas levou a um melhoramento das técnicas de rastreio de patogénicos no sangue doado. No entanto, devido aos períodos de "janela", durante o qual os agentes infeciosos não podem ser detetados, a desinfeção de sangue e seus derivados assume uma importância vital. Considerando que as técnicas convencionais de desinfeção (tratamento com solvente-detergente ou irradiação com UV ou radiação gama) pode ser empregue em concentrados de plasma ou de proteínas, o efeito colateral associado aos respetivos tratamentos não permite a sua utilização em frações celulares. Consequentemente, é necessário o desenvolvimento de uma nova alternativa eficaz para inativar microrganismos em sangue. Uma boa estratégia que merece ser considerada baseia-se na terapia fotodinâmica antimicrobiana (aPDT). aPDT envolve a interação entre a luz e um fotossensibilizador (PS) na presença de oxigénio molecular. Esta interação produz espécies reativas de oxigénio (ROS), que causam danos oxidativos às moléculas microbianas necessárias à sobrevivência do microrganismo. Em alguns países, esta metodologia já está aprovada para descontaminação de plasma, utilizando azul de metileno ou psoraleno como PSs. O objetivo deste estudo foi avaliar a adequação de de estrutura do tipo ftalocianina (Pc) e porfirina (Por) para desinfeção fotodinâmica de hemoderivados. Plasma e sangue total foram infetados com 108 unidades formadoras de colónias (CFU) / mL de Escherichia coli e após incubação com os derivados Pc e Por em estudo, expostos respetivamente a luz vermelha ou a luz branca com uma irradiância de 150 W/m2durante 270 min. As concentrações de E. coli viáveis foram determinadas a 0, 30, 60, 90, 180 e 270 min e comparadas com as obtidas nos controlos claro (amostras irradiadas na ausência de PS) e controlos escuro (amostras incubadas com PS mas não irradiadas). O efeito do tratamento aPDT nas células do sangue (glóbulos vermelhos e brancos) também foi avaliado. Os resultados obtidos mostram que, em todos os componentes do sangue, a Por em estudo é mais eficaz na inativação de E. coli que o derivado Pc. Após o tratamento aPDT, o número de células vermelhas e brancas no sangue é semelhante aos valores observados nas amostras de controlo. A eficiente inativação de células de E. coli e a ausência de efeito sobre as células de sangue transformam os derivados porfirínicos e ftalocianinas potenciais candidatos a serem utilizados com fotossensibilizadores na desinfeção fotodinâmica de produtos derivados do sangue.
Resumo:
Post-synthetic modification (PSM) of metal-organic frameworks encompassing the chemical transformation of the linker present is a promising new route for engineering optical centres and tuning the light emission properties of materials, both in the visible and in the near infrared (NIR) spectral regions. Here, PSM of isoreticular metal-organic framework-3 (IRMOF-3) with ethyl oxalyl monochloride, ethyl acetoacetate, pentane-2,4-dione, 3-(2- hydroxyphenyl)-3-oxopropanal, 2-chloroacetic acid, glyoxylic acid, methyl vinyl ketone and diethyl (ethoxymethylene)malonate followed by chelation of trivalent lanthanide ions afforded intriguing near infrared (Nd3+) and visible (Eu3+, Tb3+) light emitters. IRMOF-3 was used as a case in point due to both its highly porous crystalline structure and the presence of non-coordinating amino groups on the benzenedicarboxylate (bdc) linker amenable to modification. The materials were characterised by elemental analysis, powder X-ray diffraction, optical, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and liquid and solid-state nuclear magnetic resonance. The solid-state luminescence properties of Ln-modified-IRMOF-3 were investigated at room temperature. The presence of the bdc aromatic ring, β– diketonate and oxalate enhanced the Ln3+ sensitization via ligand-to-metal energy transfer (anthena effect). As far as photocalysis is concerned, we have synthesized metal−organic frameworks (Cr-MIL-125-AC, Ag-MIL-125-AC) by a green method (solid–vapors reactions). The resulting functionalized materials show a photocatalytic activity for methylene blue degradation up to 6.52 times larger than that of the commercial photocatalyst hombikat UV-100. These findings open the door for further research for improving the photocatalytic performance of metal-organic frameworks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)